Citation: ZHONG Bei-Jing, YAO Tong, WEN Fei. Skeletal and Reduced Mechanisms of n-Decane Simplified with Eigenvalue Analysis[J]. Acta Physico-Chimica Sinica, ;2014, 30(2): 210-216. doi: 10.3866/PKU.WHXB201312103 shu

Skeletal and Reduced Mechanisms of n-Decane Simplified with Eigenvalue Analysis

  • Received Date: 27 September 2013
    Available Online: 10 December 2013

    Fund Project: 国家自然科学基金(51036004)资助项目 (51036004)

  • Based on the eigenvalue analysis reduction method, a detailed mechanism of n-decane with 118 species and 527 reactions was simplified. A skeletal mechanism with 70 species and 327 reactions was thus obtained. The computational singular perturbation (CSP) reduction method, which is based on eigenvalue analysis, was subsequently used to simplify the skeletal mechanism, and a reduced mechanism with 38 species and 34 reaction steps was developed. Comparison between the reduced mechanism, skeletal mechanism, and detailed mechanism showed that the reduced and skeletal mechanisms could reproduce the characteristics of the detailed mechanism and give the combustion characteristics of n-decane. The development of these models represents a significant step toward coupling of chemical reaction kinetics with computational fluid dynamics, and is a od basis for improving computational efficiency.

  • 加载中
    1. [1]

      (1) Dagaut, P.; El Bakali, A.; Ristori, A. Fuel 2006, 85 (7-8), 944.

    2. [2]

      (2) Seiser, R.; Niemann, U.; Seshadri, K. Proc. Combust. Inst. 2011,33 (1), 1045. doi: 10.1016/j.proci.2010.06.078

    3. [3]

      (3) Mont mery, C. J. Optimized Reduced Chemical KineticMechanisms for Ethylene and JP-8 Combustion. 45th AIAAAerospace Sciences Meeting and Exhibit. Reno, Nevada,America, January 8-11, 2007.

    4. [4]

      (4) Lu, T.; Law, C. K. Combust. Flame 2008, 154 (1-2), 153.

    5. [5]

      (5) Lu, T.; Law, C. K. Prog. Energ. Combust. 2009, 35 (2),192. doi: 10.1016/j.pecs.2008.10.002

    6. [6]

      (6) Vajda, S.; Valko, P.; Turányi, T. Int. J. Chem. Kinet. 1985, 17 (1), 55.

    7. [7]

      (7) Turányi, T. J. Math. Chem. 1990, 5 (3), 203. doi: 10.1007/BF01166355

    8. [8]

      (8) Rabitz, H.; Kramer, M.; Dacol, D. Annu. Rev. Phys. Chem.1983, 34 (1), 419. doi: 10.1146/annurev.pc.34.100183.002223

    9. [9]

      (9) Lu, T.; Law, C. K. Proc. Combust. Inst. 2005, 30 (1), 1333. doi: 10.1016/j.proci.2004.08.145

    10. [10]

      (10) Lu, T.; Law, C. K. Combust. Flame 2006, 146 (3), 472. doi: 10.1016/j.combustflame.2006.04.017

    11. [11]

      (11) Wen, F.; Zhong, B. J. Acta Phys. -Chim. Sin. 2012, 28, 1306.[文斐,钟北京.物理化学学报, 2012, 28, 1306.] doi: 10.3866/PKU.WHXB201204012

    12. [12]

      (12) ussis, D. A.; Lam, S. H. Symp. Int. Combust. 1992, 24 (1),113. doi: 10.1016/S0082-0784(06)80018-4

    13. [13]

      (13) Lam, S. H. Combust. Sci. Tech. 1993, 89 (5-6), 375. doi: 10.1080/00102209308924120

    14. [14]

      (14) Lam, S. H.; Coussis, D. A. Symp. Int. Combust. 1989, 22 (1),931. doi: 10.1016/S0082-0784(89)80102-X

    15. [15]

      (15) Maas, U.; Pope, S. B. Combust. Flame 1992, 88 (3-4), 239.

    16. [16]

      (16) Lu, T.; Law, C. K. Combust. Flame 2006, 144 (1-2), 24.

    17. [17]

      (17) Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154 (1-2), 67.

    18. [18]

      (18) Sun, W.; Chen, Z.; u, X.; Ju, Y. Combust. Flame 2010, 157 (7), 1298. doi: 10.1016/j.combustflame.2010.03.006

    19. [19]

      (19) Westbrook, C. K.; Pitz, W. J.; Herbinet, O.; Curran, H. J.; Silke,E. J. Combust. Flame 2009, 156 (1), 181. doi: 10.1016/j.combustflame.2008.07.014

    20. [20]

      (20) Douté, C.; Delfau, J. L.; Vovelle, C. Combust. Sci. Tech. 1997,130 (1-6), 269. doi: 10.1080/00102209708935746

    21. [21]

      (21) Wang, Q. D.; Fang, Y. M.; Wang, F.; Li, X. Y. Combust. Flame2012, 159 (1), 91. doi: 10.1016/j.combustflame.2011.05.019

    22. [22]

      (22) Liu, J. W.; Xiong, S. W.; Ma, X. S. J. Prop. Tech. 2011, 32 (4),525. [刘建文, 熊生伟,马雪松. 推进技术, 2011, 32 (4), 525.]

    23. [23]

      (23) Chang, Y.; Jia, M.; Liu, Y.; Li, Y.; Xie, M. Combust. Flame2013, 160, 1315. doi: 10.1016/j.combustflame.2013.02.017

    24. [24]

      (24) Zhukov, V. P.; Sechenov, V. A.; Starikovskii, A. Y. Combust. Flame 2008, 153 (1-2), 130.

    25. [25]

      (25) Bikas, G.; Peters, N. Combust. Flame 2001, 126 (1-2), 1456.

    26. [26]

      (26) Buda, F.; Bounaceur, R.; Warth, V.; Glaude, P. A. Combust. Flame 2005, 142 (1-2), 170. doi: 10.1016/j.combustflame.2005.03.005

    27. [27]

      (27) Lindstedt, R. P.; Maurice, L. Q. J. Propul. Power. 2000, 16 (2),187. doi: 10.2514/2.5582

    28. [28]

      (28) Zhao, Z. W.; Li, J.; Kazakov, A.; Dryer, F. L.; Zeppieri, S. P.Combust. Sci. Tech. 2005, 177 (1), 89.

    29. [29]

      (29) Zhukov, V. P.; Tsyganov, D. L.; Sechenov, V. A.; Starikovskii, A.Y. n-Decane Ignition at High Pressures. In Proceedings of theEuropean Combustion Meeting, European Combustion Meeting2005, Louvain-la-Neuve, Belgium, April 3-6, 2005; pp 194-196.

    30. [30]

      (30) Pfahl, U.; Fieweger, K.; Adomeit, G. Proc. Combust. Inst. 1996,26, 781.

    31. [31]

      (31) Wen, F.; Yao, T.; Zhong, B. J. J. Eng. Thermo. 2012, 33 (4), 699.[文斐,姚通,钟北京. 工程热物理学报, 2012, 33 (4), 699.]

    32. [32]

      (32) Kee, R. J.; Rupley, F. M.; Miller, J. A.; et al. CHEMKINRelease 4.1; Reaction Design: San Die , CA, 2006.

    33. [33]

      (33) Kumar, K.; Sung, C. J. Combust. Flame 2007, 151 (1-2), 209.

    34. [34]

      (34) Ji, C.; Dames, E.; Wang, Y. L.; Wang, H.; E lfopoulos, F. N.Combust. Flame 2010, 157, 277. doi: 10.1016/j.combustflame.2009.06.011

    35. [35]

      (35) Kim, H. H.; Won, S. H.; Santner, J.; Chen, Z.; Ju, Y. Proc. Combust. Inst. 2013, 34, 936.


  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    9. [9]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    14. [14]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    17. [17]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(604)
  • Abstract views(989)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return