Citation:
LIU Hai, DONG Xiao, HE Yuan-Hang. Reactive Molecular Dynamics Simulations of Carbon-Containing Clusters Formation during Pyrolysis of TNT[J]. Acta Physico-Chimica Sinica,
;2014, 30(2): 232-240.
doi:
10.3866/PKU.WHXB201312101
-
ReaxFF molecular dynamics simulations of trinitrotoluene (TNT) pyrolysis show that use of the ReaxFF/lg potential function, which adds the London dispersion term, gives superior results in equilibrium density calculation of energetic materials. According to our calculations using limited time steps, the main products are NO2, NO, H2O, N2, CO2, CO, OH, and HONO, and H2O, N2, and CO2 are the final products. We also used ReaxFF potential functions to simulate the same process to conduct a comparative analysis. The main and final products are consistent with those obtained using ReaxFF/lg, but the kinetics are different. Both ortho-NO2 homolytic cleavage and C―NO2→C―ONO rearrangement homolysis are thermodynamically favorable pathways in the early thermal decomposition of TNT. However, C―NO2→C―ONO rearrangement homolysis is less favorable kinetically than C―NO2 homolysis, since C―NO2 is the weakest bond in TNT. Soon after their formation, NO2 and NO participate in secondary reactions and eventually form N2. Pyrolysis to form OH and other small molecules promotes the formation of H2O. Aromatic ring fission does not take place until most of the attached groups have interacted or are removed, and increasing the temperature accelerates main-ring fission and further decomposition to form CO2; this is the major reason for CO2 distribution fluctuations under high-temperature conditions. When the TNT molecules in the unit cell are almost completely decomposed, the potential energy of the system is significantly attenuated. The maximum amount of carbon-containing clusters formed in the thermal decomposition is more dependent on density than on temperature. Moreover, the simulation results show that coagulation of carbonaceous intermediates occurs before the TNT decomposes completely. These studies show that the simulation of TNT pyrolysis using the ReaxFF/lg reactive force field can provide detailed kinetic and chemical information, which are helpful in understanding the detonation of energetic materials and assessing their security.
-
Keywords:
-
TNT
, - Pyrolysis,
- ReaxFF/lg,
- Carbon-containing cluster,
- Molecular dynamics
-
-
-
-
[1]
(1) Dubnikova, F.; Kosloff, R.; Almog, J.; Zeiri, Y.; Boese, R.;Itzhaky, H.; Alt, A.; Keinan, E. J. Am. Chem. Soc. 2005, 127,1146. doi: 10.1021/ja0464903
-
[2]
(2) Dong, L. M.; Li, X. D.; Yang, R. J. Acta Phys. -Chim. Sin. 2009,25 (5), 981. [董林茂, 李晓东, 杨荣杰. 物理化学学报, 2009,25 (5), 981.] doi: 10.3866/PKU.WHXB20090525
-
[3]
(3) Brill, T. B.; James, K. Chem. Rev. 1993, 93, 2667. doi: 10.1021/cr00024a005
-
[4]
(4) Brill, T. B.; James, K. J. Phys. Chem. 1993, 97, 8759. doi: 10.1021/j100136a018
-
[5]
(5) Long, G. T.; Brems, B. A.;Wight, C. A. Thermochim. Acta2002, 388, 175. doi: 10.1016/S0040-6031(02)00031-X
-
[6]
(6) McGuire, R. R.; Tarver, C. M. In Seventh Symposium (International) on Detonation, Proceedings, SeventhSymposium (International) on Detonation, Annapolis,Maryland, June 16-19, 1981; Short, J. M. Ed.; Silver Spring:Maryland, 1982; pp 56-60.
-
[7]
(7) Makashir, P. S.; Kurian, E. M. Journal of Thermal Analysis and Calorimetry 1999, 55, 173. doi: 10.1023/A:1010152626354
-
[8]
(8) Cohen, R.; Zeiri, Y.;Wurzberg, E.; Kosloff, R. J. Phys. Chem. A2007, 111, 11074. doi: 10.1021/jp072121s
-
[9]
(9) Van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; ddard,W. A.,III. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u
-
[10]
(10) (a) Plimpton, S. J. Comp. Phys. 1995, 117, 1.
-
[11]
(b) http://lammps.sandia. v. (accessed Apr 16, 2013).
-
[12]
(11) Zhou, T. T.; Shi, Y. D.; Huang, F. L. Acta Phys. -Chim. Sin.2012, 28 (11), 2605. [周婷婷, 石一丁, 黄风雷. 物理化学学报, 2012, 28 (11), 2605.] doi: 10.3866/PKU.WHXB201208031
-
[13]
(12) Zhang, L.; Chen, L.;Wang, C.;Wu, J. Y. Acta Phys. -Chim. Sin.2013, 29 (6), 1145. [张力, 陈朗, 王晨, 伍俊英. 物理化学学报, 2013, 29 (6), 1145.] doi: 10.3866/PKU.WHXB201303221
-
[14]
(13) Strachan, A.; Kober, E. M.; Van Duin, A. C. T.; Oxgaard, J.; ddard,W. A., III. J. Chem. Phys. 2005, 122, 054502. doi: 10.1063/1.1831277
-
[15]
(14) Zhou, T. T.; Huang, F. L. J. Phys. Chem. B 2011, 115, 278. doi: 10.1021/jp105805w
-
[16]
(15) Rom, N.; Zybin, S. V.; Van Duin, A. C. T.; ddard,W. A., III;Zeiri, Y.; Katz, G.; Kosloff, R. J. Phys. Chem. A 2011, 115,10181. doi: 10.1021/jp202059v
-
[17]
(16) Zhang, L. Z.; Zybin, S. V.; Van Duin, A. C. T.; Dasgupta, S.; ddard,W. A., III. J. Phys. Chem. A 2009, 113, 10619. doi: 10.1021/jp901353a
-
[18]
(17) Qian, H. J.; Van Duin, A. C. T.; Morokuma, K.; Irle, S. J. Chem. Theory Comput. 2011, 7, 2040. doi: 10.1021/ct200197v
-
[19]
(18) Weismiller, M. R.; Van Duin, A. C. T.; Lee, J.; Yetter, R. A.J. Phys. Chem. A 2010, 114, 5485. doi: 10.1021/jp100136c
-
[20]
(19) Agrawalla, S.; Van Duin, A. C. T. J. Phys. Chem. A 2011, 115,960. doi: 10.1021/jp108325e
-
[21]
(20) Liu, L. C.; Bai, C.; Sun, H. J. Phys. Chem. A 2011, 115,4941. doi: 10.1021/jp110435p
-
[22]
(21) Chenoweth, K.; Van Duin, A. C. T.; Dasgupta, S.; ddard,W.A., III. J. Phys. Chem. A 2009, 113, 1740. doi: 10.1021/jp8081479
-
[23]
(22) Ge, N. N.;Wei, Y. K.; Ji, G. F.; Chen, X. R.; Zhao, F.;Wei, D.Q. J. Phys. Chem. B 2012, 116, 13696. doi: 10.1021/jp309120t
-
[24]
(23) Strachan, A.; Van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; ddard,W. A., III. Physical Review Letters 2003, 91 (9),098301. doi: 10.1103/PhysRevLett.91.098301
-
[25]
(24) Zhang, L.; Zybin, S. V.; Van Duin, A. C. T.; Dasgupta, S.; ddard,W. A. AIP Conference Proceedings 2006, 845,585. doi: 10.1063/1.2263390
-
[26]
(25) Budzien, J.; Thompson, A. P.; Zybin, S. V. J. Phys. Chem. B2009, 113, 13142. doi: 10.1021/jp9016695
-
[27]
(26) Zhang, L. Z.; Zybin, S. V.; Van Duin, A. C. T.; ddard,W. A.,III. Journal of Energetic Materials, 2010, 28, 92. doi: 10.1080/07370652.2010.504682
-
[28]
(27) Nomura, K.; Kalia, R. K.; Nakano, A.; Vashishta, P. Physical Review Letters 2007, 99, 148303. doi: 10.1103/PhysRevLett.99.148303
-
[29]
(28) An, Q.; Zybin, S. V.; ddard,W. A., III; Botero, A. J.; Blanco,M.; Luo, S. N. Phys. Rev. B 2011, 84, 220101(R). doi: 10.1103/PhysRevB.84.220101
-
[30]
(29) Brenner, D.W.; Robertson, D. H.; Elert, M. L.; White, C. T.Physical Review Letters 1993, 70, 2174. doi: 10.1103/PhysRevLett.70.2174
-
[31]
(30) Sapozhnikov, F. A.; Dremov, V. V.; Derbenev, I. V.; Karavaev,A. V.; Soulard, L. AIP Conference Proceedings 2007, 955, 463.
-
[32]
(31) Heim, A. J.; Jensen, N. G.; Kober, E. M.; Germann, T. C. Phys. Rev. E 2008, 78, 046710. doi: 10.1103/PhysRevE.78.046710
-
[33]
(32) Landerville, A. C.; Oleynik, I. I.; White, C. T. Shock Compression of Condensed Matter 2009, 1195, 813.
-
[34]
(33) Mayo, S. L.; Olafson, B. D.; ddard,W. A. Journal of Physical Chemistry 1990, 94, 8897.
-
[35]
(34) Rappe, A. K.; Casewit, C. J.; Colwell , K. S.; ddard,W. A.,III; Skiff,W. M. J. Am. Chem. Soc. 1992, 114, 10024. doi: 10.1021/ja00051a040
-
[36]
(35) Shi, Y. F.; Brenner, D.W. J. Phys. Chem. 2007, 127,134503. doi: 10.1063/1.2779877
-
[37]
(36) Shi, Y. F.; Brenner, D.W. J. Phys. Chem. C 2008, 112,6263. doi: 10.1021/jp7119735
-
[38]
(37) Ma, X. F.; Zhu,W. H; Xiao, J. J.; Xiao, H. M. Journal of Hazardous Materials 2008, 156, 201. doi: 10.1016/j.jhazmat.2007.12.068
-
[39]
(38) Liu, L. C.; Liu, Y.; Zybin, S. V.; Sun, H.; ddard,W. A., III. J. Phys. Chem. A 2011, 115, 11016. doi: 10.1021/jp201599t
-
[40]
(39) Zhou, T. T.; Zybin, S. V.; Liu, Y.; Huang, F. L.; ddard,W. A.J. Appl. Phys. 2012, 111, 124904. doi: 10.1063/1.4729114
-
[41]
(40) http://www.ccdc.cam.ac.uk (accessed Feb 26, 2013).
-
[42]
(41) Turner, A. G.; Davis, L. P. J. Am. Chem. Soc. 1984, 106,5447. doi: 10.1021/ja00331a011
-
[43]
(42) Viecelli, J. A.; Glosli, J. N. J. Chem. Phys. 2002, 117,11352. doi: 10.1063/1.1522395
-
[44]
(43) Mironov, E. V.; Petrov, E. A.; Korets, A. Y. Combust. Explos. Shock Waves 2004, 40, 473. doi: 10.1023/B:CESW.0000033571.82326.6a
-
[45]
(44) Kruger, A.; Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y.;Aleksenski, A. E.; Vul, A. Y.; Osawa, E. Carbon 2005, 43,1722. doi: 10.1016/j.carbon.2005.02.020
-
[46]
(45) Ten, K. A.; Aulchenko, V. M.; Lukjanchikov, L. A.; Pruuel, E.R.; Shekhtman, L. I.; Tolochko, B. P.; Zhogin, I. L.; Zhulanov,V. V. Nuclear Instruments and Methods in Physics Research A2009, 603, 102. doi: 10.1016/j.nima.2008.12.176
-
[47]
(46) Chevrot, G.; Sollier, A.; Pineau, N. J. Chem. Phys. 2012, 136,084506. doi: 10.1063/1.3686750
-
[1]
-
-
-
[1]
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
-
[2]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[3]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[4]
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
-
[5]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[6]
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
-
[7]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[8]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[9]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[10]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[11]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[12]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[13]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[14]
Yue Wu , Jun Li , Bo Zhang , Yan Yang , Haibo Li , Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028
-
[15]
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
-
[16]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . 基于激发态手性铜催化的烯烃E→Z异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[17]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027
-
[18]
Wen Jiang , Jieli Lin , Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144
-
[19]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[20]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
-
[1]
Metrics
- PDF Downloads(777)
- Abstract views(967)
- HTML views(51)