Citation:
CHEN Xi-Ming, JIA Chun-Yang, WAN Zhong-Quan, YAO Xiao-Jun. Theoretical Investigations of Tetrathiafulvalene Derivative as Electron Donor in Organic Dye for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2014, 30(2): 273-280.
doi:
10.3866/PKU.WHXB201311262
-
To investigate the effect of a tetrathiafulvalene (TTF) unit on the photovoltaic properties of the corresponding dye sensitizer, a TTF-carbazole-based sensitizer, Dye 2, was designed; it was based on the framework of Dye 1. The geometries, electronic structures, and optical properties of Dye 1 and Dye 2 before and after binding to (TiO2)9 clusters were investigated using density functional theory (DFT) and timedependent DFT. The surface morphologies of the dyes on TiO2 (101) surfaces were simulated by periodic DFT calculations using the DMol3 program. The calculated results showed that the introduction of TTF units into dyes could help to inhibit dye aggregation on the TiO2 surface; this is conducive to intramolecular charge- transfer transitions and significantly improves the light-harvesting ability. The calculated results demonstrate that the TTF unit is a very promising electron donor for improving the photovoltaic properties of organic dye sensitizers.
-
-
-
[1]
(1) O′Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Lee, H. J.; Leventis, H. C.; Haque, S. A.; Torres, T.; Grätzel, M.;Nazeeruddin, M. K. J. Power Sources 2011, 196, 596. doi: 10.1016/j.jpowsour.2010.06.096
-
[3]
(3) Clifford, J. N.; Martinez-Ferrero, E.; Viterisi, A.; Palomares, E.Chem. Soc. Rev. 2011, 40, 1635. doi: 10.1039/b920664g
-
[4]
(4) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[5]
(5) Wang, X. F.; Tamiaki, H. Energy Environ. Sci. 2010, 3, 94. doi: 10.1039/b918464c
-
[6]
(6) Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H.Chem. Rev. 2010, 110, 6595. doi: 10.1021/cr900356p
-
[7]
(7) Mishra, A.; Fischer, M. K. R.; Bäuerle, P. Angew. Chem. Int. Edit. 2009, 121, 2510. doi: 10.1002/anie.200804709
-
[8]
(8) Liang, M.; Lu, M.;Wang, Q. L.; Chen,W. Y.; Han, H. Y.; Sun,Z.; Xue, S. J. Power Sources 2011, 196, 1657. doi: 10.1016/j.jpowsour.2010.08.055
-
[9]
(9) Kandavelu, V.; Huang, H. S.; Jian, J. L.; Yang, T. C. K.;Wang,K. L.; Huang, S. T. Sol. Energy 2009, 83, 574. doi: 10.1016/j.solener.2008.10.002
-
[10]
(10) Matsui, M.; Asamura, Y.; Kubota, Y.; Funabiki, K.; Jin, J.;Yoshida, T.; Miura, H. Tetrahedron 2010, 66, 7405. doi: 10.1016/j.tet.2010.07.017
-
[11]
(11) Nishida, S.; Morita, Y.; Fukui, K.; Sato, K.; Shiomi, D.; Takui,T.; Nakasuji, K. Angew. Chem. Int. Edit. 2005, 44, 7277. doi: 10.1002/anie.200502180
-
[12]
(12) Olaya, A. J.; Ge, P.; nthier, J. F.; Pechy, P.; Corminboeuf, C.;Girault, H. H. J. Am. Chem. Soc. 2011, 133, 12115. doi: 10.1021/ja203251u
-
[13]
(13) Jia, C.; Liu, S. X.; Ambrus, C.; Neels, A.; Labat, G.; Decurtins,S. Inorg. Chem. 2006, 45, 3152. doi: 10.1021/ic060056f
-
[14]
(14) Jia, C.; Liu, S. X.; Tanner, C.; Leiggener, C.; Neels, A.;Sanguinet, L.; Levillain, E.; Leutwyler, S.; Hauser, A.;Decurtins, S. Chem. Eur. J. 2007, 13, 3804. doi: 10.1002/chem.200601561
-
[15]
(15) Jia, C. Y.; Zhang, D. Q.; Xu, Y.; Xu,W.; Zhu, D. Syn. Met. 2003,137, 979. doi: 10.1016/S0379-6779(02)00974-8
-
[16]
(16) Chen, Y.; Liu,W.; Jin, J. S.; Liu, B.; Zou, Z. G.; Zuo, J. L.; You,X. Z. J. Organomet. Chem. 2009, 694, 763. doi: 10.1016/j.jorganchem.2008.12.018
-
[17]
(17) McCall, K. L.; Morandeira, A.; Durrant, J.; Yellowlees, L. J.;Robertson, N. Dalton Tran. 2010, 39, 4138. doi: 10.1039/b924660f
-
[18]
(18) Wenger, S.; Bouit, P. A.; Chen, Q.; Teuscher, J.; Censo, D. D.;Humphry-Baker, R.; Moser, J. E.; Delgado, J. L.; Martín, N.;Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2010, 132,5164. doi: 10.1021/ja909291h
-
[19]
(19) Sanchez-de-Armas, R.; San Miguel, M. A.; Oviedo, J.; Sanz, J.F. Phys. Chem. Chem. Phys. 2012, 14, 225. doi: 10.1039/c1cp22058f
-
[20]
(20) De Angelis, F.; Fantacci, S.; Gebauer, R. J. Phys. Chem. Lett.2011, 2, 813. doi: 10.1021/jz200191u
-
[21]
(21) Zhan,W. S.; Pan, S.; Li, Y. Z.; Chen, M. D. Acta Phys. -Chim. Sin. 2009, 25, 2087. [詹卫伸, 潘石, 李源作, 陈茂笃. 物理化学学报, 2009, 25, 2087.] doi: 10.3866/PKU.WHXB20090925
-
[22]
(22) Zhan,W. S.; Li, R.; Pan, S.; Guo, Y. N.; Zhang, Y. Acta Phys. -Chim. Sin. 2013, 29, 255. [詹卫伸, 李睿, 潘石,郭英楠, 张毅. 物理化学学报, 2013, 29, 255.] doi: 10.3866/PKU.WHXB201211221
-
[23]
(23) Cao, Z. F.; Chen, Q. B.; Lu, Y. X.; Liu, H. L.; Hu, Y. Acta Phys. -Chim. Sin. 2012, 28, 1085. [曹振锋, 陈启斌, 卢运祥,刘洪来, 胡英. 物理化学学报, 2012, 28, 1085.] doi: 10.3866/PKU.WHXB201203024
-
[24]
(24) Zhang, J.; Li, H. B.; Sun, S. L.; Geng, Y.;Wu, Y.; Su, Z. M. J. Mater. Chem. 2012, 22, 568. doi: 10.1039/c1jm13028e
-
[25]
(25) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
-
[26]
(26) Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
-
[27]
(27) Delley, B. J. Chem. Phys. 1990, 92, 508. doi: 10.1063/1.458452
-
[28]
(28) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. doi: 10.1063/1.464304
-
[29]
(29) Sanchez-de-Armas, R.; San-Miguel, M. A.; Oviedo, J.;Marquez, A.; Sanz, J. F. Phys. Chem. Chem. Phys. 2011, 13,1506. doi: 10.1039/c0cp00906g
-
[30]
(30) Sanchez-de-Armas, R. O.; Oviedo Lopez, J.; San-Miguel, M.A.; Sanz, J. F.; Ordejón, P.; Pruneda, M. J. Chem. Theory Comput. 2010, 6, 2856. doi: 10.1021/ct100289t
-
[31]
(31) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393,51. doi: 10.1016/j.cplett.2004.06.011
-
[32]
(32) Pastore, M.; Mosconi, E.; De Angelis, F.; Grätzel, M. J. Phys. Chem. C 2010, 114, 7205. doi: 10.1021/jp100713r
-
[33]
(33) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105,2999. doi: 10.1021/cr9904009
-
[34]
(34) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865
-
[35]
(35) Delley, B. Phys. Rev. B 2002, 66, 155125. doi: 10.1103/PhysRevB.66.155125
-
[36]
(36) Xu, J.; Zhang, H.;Wang, L.; Liang, G.;Wang, L.; Shen, X.; Xu,W. Spectrochim. Acta A 2010, 76, 239. doi: 10.1016/j.saa.2010.03.027
-
[37]
(37) Asbury, J.;Wang, Y. Q.; Hao, E.; Ghosh, H.; Lian, T. Res. Chem. Intermediat. 2001, 27, 393. doi: 10.1163/156856701104202255
-
[38]
(38) Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I.J. Phys. Chem. B 2000, 104, 2053. doi: 10.1021/jp993187t
-
[39]
(39) Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Grätzel, M. J. Phys. Chem. B 2000, 104, 1300. doi: 10.1021/jp993583b
-
[40]
(40) Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M.J. Phys. Chem. B 2003, 107, 8981. doi: 10.1021/jp022656f
-
[41]
(41) Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan,N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P. J. Comput. Chem. 2011, 32, 1568. doi: 10.1002/jcc.21735
-
[42]
(42) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.;Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2002, 107, 597. doi: 10.1021/jp026963x
-
[43]
(43) Ye, S.; Kathiravan, A.; Hayashi, H.; Tong, Y.; Infahsaeng, Y.;Chabera, P.; Pascher, T.; Yartsev, A. P.; Isoda, S.; Imahori, H.;Sundström, V. J. Phys. Chem. C 2013, 117, 6066. doi: 10.1021/jp400336r
-
[44]
(44) Jungsuttiwong, S.; Yakhanthip, T.; Surakhot, Y.; Khunchalee, J.;Sudyoadsuk, T.; Promarak, V.; Kungwan, N.; Namuangruk, S.J. Comput. Chem. 2012, 33, 1517. doi: 10.1002/jcc.22983
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[6]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[7]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[8]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[9]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[10]
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
-
[11]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[12]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[13]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[14]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[15]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[16]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[17]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[18]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[19]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[20]
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
-
[1]
Metrics
- PDF Downloads(747)
- Abstract views(1391)
- HTML views(48)