Citation:
HU You-Kun, REN Jian-Xin, WEI Qiao-Ling, GUO Xiao-Dong, TANG Yan, ZHONG Ben-He, LIU Heng. Synthesis of Rod-Like LiFePO4/C Materials with Different Aspect Ratios by Polyol Process[J]. Acta Physico-Chimica Sinica,
;2014, 30(1): 75-82.
doi:
10.3866/PKU.WHXB201311261
-
Rod-like LiFePO4/C particles with different aspect ratios were synthesized by controlling the reflux reaction time in polyol medium at a low temperature, using an Fe3+ salt as the iron source. The precursors and final LiFePO4/C samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge test. The results show that the reflux reaction time has a significant effect on the characteristics of the LiFePO4 precursors and electrochemical performance of the final LiFePO4/C samples. The morphology of the precursors is transformed from irregular short rod-like particles into regular long rod-like particles, and the aspect ratios of the rods increase with increasing reflux reaction time from 4 to 16 h. At a reflux reaction time of 10 h, the material contains multifarious morphologies, which is beneficial to the electron transmission, and displays an excellent electrochemical performance at low discharge rates, the discharge capacity is 163 mAh·g-1 at 0.1C rate. Extension of the reflux reaction time to 16 h, the material reveals the biggest aspect ratio, which is conducive to the diffusion of lithium ions, and gives od electrochemical performance at high discharge rates, the discharge capacities are measured to be 135, 125, 118, 110, and 98 mAh·g-1 at 1C, 3C, 5C, 10C, and 20C rates, respectively, revealing od cycling performance and little capacity fading.
-
-
-
[1]
(1) Andersson, A. S.; Thomas, J. O. J. Power Sources 2001, 97, 498.
-
[2]
(2) Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. Chem. Rev.2004, 104, 4243. doi: 10.1021/cr020705e
-
[3]
(3) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B.J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
-
[4]
(4) Yang, M. R.; Ke,W. H.;Wu, S. H. J. Power Sources 2007, 165,646. doi: 10.1016/j.jpowsour.2006.10.054
-
[5]
(5) Cheng, Y.;Wang, G.; Yan, M. M.; Jiang, Z. Y. J. Solid State Electrochem. 2007, 11, 310.
-
[6]
(6) Ferrari, S.; Lavall, R. L.; Capsoni, D.; Quartarone, E.; Magistris,A.; Mustarelli, P.; Canton, P. J. Phys. Chem. C 2010, 114,12598. doi: 10.1021/jp1025834
-
[7]
(7) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. Electrochem. Solid-State Lett. 2006, 9, A352.
-
[8]
(8) Konarova, M.; Taniguchi, L. J. Power Sources 2010, 195,3661. doi: 10.1016/j.jpowsour.2009.11.147
-
[9]
(9) Yang, S. T.; Zhao, N. H.; Dong, H. Y.; Yang, J. X.; Hue, H. Y.Electrochim. Acta 2005, 51, 166. doi: 10.1016/j.electacta.2005.04.013
-
[10]
(10) Jinsub, L.; Mathew, V.; Kangkun, K.; Jieh, M.; Jaekook, K.J. Electrochem. Soc. 2011, 158, A736.
-
[11]
(11) Kim, D.; Lim, J.; Choi, E.; Gim, J.; Mathew, V.; Paik, Y.; Jung,H.; Lee,W.; Ahn, D.; Paek, S.; Kim, J. Surf. Rev. Lett. 2010, 17,111. doi: 10.1142/S0218625X10014053
-
[12]
(12) Deng, H. G.; Jin, S. L.; Zhan, L.; Qiao,W. M.; Ling, L. C.Electrochim. Acta 2012, 78, 633. doi: 10.1016/j.electacta.2012.06.059
-
[13]
(13) Zheng, J. C.; Li, X. H.;Wang, Z. X.; Guo, H. J.; Zhou, S. Y.J. Power Sources 2008, 184, 574. doi: 10.1016/j.jpowsour.2008.01.016
-
[14]
(14) Cao, Y. B.; Duan, J. G.; Jiang, F.; Hu, G. R.; Peng, Z. D.; Du, K.Acta Phys. -Chim. Sin. 2012, 28 (5), 1183. [曹雁冰, 段建国,姜峰, 胡国荣, 彭忠东, 杜柯. 物理化学学报, 2012, 28 (5),1183.] doi: 10.3866/PKU.WHXB201202221
-
[15]
(15) Franger, S.; Le, C. F.; Bourbon, C.; Rouault, H. J. Power Sources 2003, 119, 252.
-
[16]
(16) Arnold, G.; Garche, J.; Hemmer, R.; Strobele, S.; Vogler, C.;Wohlfahrt-Mehrens, A. J. Power Sources 2003, 119, 247.
-
[17]
(17) Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc.2001, 148, A224.
-
[18]
(18) Yang, S. F.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2001, 3, 505. doi: 10.1016/S1388-2481(01)00200-4
-
[19]
(19) Dokko, K.; Koizumi, S.; Nakano, H.; Kanamura, K. J. Chem. Mater. 2007, 17, 45. doi: 10.1039/b613457m
-
[20]
(20) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27 (10), 2347. [赵浩川,宋杨, 郭孝东, 钟本和, 董静, 刘恒. 物理化学学报,2011, 27 (10), 2347.] doi: 10.3866/PKU.WHXB20110905
-
[21]
(21) Murugan, A. V.; Muraliganth, T.; Manthiram, A. Electrochem. Commun. 2008, 10, 903. doi: 10.1016/j.elecom.2008.04.004
-
[22]
(22) ng, H. X.; Yu, Y.; Li, T.; Mei, T.; Xing, Z.; Zhu, Y. C.; Qian,Y. T.; Shen, X. Y. Mater. Lett. 2012, 66, 374. doi: 10.1016/j.matlet.2011.08.093
-
[23]
(23) Kim, J. K.; Choi, J.W.; Chauhan, G. S.; Ahn, J. H.; Hwang, G.C.; Choi, J. B.; Ahn, H. J. Electrochim. Acta 2008, 53, 28.
-
[24]
(24) Sun, C.W.; Rajasekhara, S.; odenough, J. B.; Zhou, F. J. Am. Chem. Soc. 2011, 133, 2132. doi: 10.1021/ja1110464
-
[25]
(25) Wen, J. J. Study on the Lquid Phase Synthesis of Lithium IronPhosphate for Cathode Materials. MS Dissertation, SichuanUniversity, Chengdu, 2012. [文嘉杰. 液相法合成磷酸铁锂正极材料的研究[D]. 成都: 四川大学, 2012.]
-
[26]
(26) Wang, Y. G.;Wang, Y. R.; Hosono, E. J.;Wang, K. X.; Zhou, H.S. Angew. Chem. Int. Edit. 2008, 47, 7461. doi: 10.1002/anie.v47:39
-
[27]
(27) Lin, Y. B.; Lin, Y.; Zhou, T.; Zhou, T.; Zhao, G. Y.; Huang, Y.D.; Huang, Z. G. J. Power Sources 2013, 226, 20. doi: 10.1016/j.jpowsour.2012.10.074
-
[28]
(28) Dimesso, L.; Spanheimer, C.; Jacke, S.; Jaegermann,W.J. Power Sources 2011, 196, 6729. doi: 10.1016/j.jpowsour.2010.11.015
-
[29]
(29) Barsoukov, E.; Kim, J. H.; Yoon, C. O.; Lee, H. J. Electrochem. Soc. 1998, 145, 2711. doi: 10.1149/1.1838703
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[3]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[4]
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
-
[5]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[6]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[7]
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
-
[8]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[9]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[10]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[11]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[12]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[13]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[14]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[15]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[16]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[17]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
-
[18]
Wendi Dou , Guangying Wan , Tiefeng Liu , Lin Han , Wu Zhang , Chuang Sun , Rensheng Song , Jianhui Zheng , Yujing Liu , Xinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389
-
[19]
Hao Sun , Xiaoxue Li , Baoyu Wu , Kai Zhu , Yinyi Gao , Tianzeng Bao , Hongbin Wu , Dianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041
-
[20]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
-
[1]
Metrics
- PDF Downloads(714)
- Abstract views(1020)
- HTML views(41)