Citation:
PENG Zhong, YAN Wen-Yi, WANG Shao-Na, ZHENG Shi-Li, DU Hao, ZHANG Yi. Effect of Alkali Concentration, Oxygen Partial Pressure and Temperature on Oxygen Reduction Reaction on Pt Electrode in NaOH Solution[J]. Acta Physico-Chimica Sinica,
;2014, 30(1): 67-74.
doi:
10.3866/PKU.WHXB201311143
-
In this study, the influences of alkali concentration, oxygen partial pressure, and temperature on the oxygen reduction reaction (ORR) were examined in detail, using a specially designed electrochemical cell, by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) in NaOH solutions. It was found that the ORR pathway is dependent on the solution alkalinity, and is transformed from a two-electron reduction by forming HO2- in dilute solutions to a one-electron reduction by forming stable O2- in concentrated solutions. The process was significantly suppressed by decreases in the oxygen solubility and increases in the media viscosity. The oxygen pressure had a significant influence on the ORR, substantially promoting the ORR in alkaline solutions as a result of the greatly increased solubility of oxygen in the solutions. We obtained the Henry's constants of oxygen in NaOH solutions with different concentrations. The temperature had a clear dual effect on the ORR, as shown by the existence of an optimal temperature for the ORR in a given alkaline solution. These observations are discussed in terms of the oxygen reaction activity, oxygen solubility, and diffusion coefficient.
-
-
-
[1]
(1) Zhang, L. P.; Xia, Z. H. J. Phys. Chem. C 2011, 115, 11170.doi: 10.1021/jp201991j
-
[2]
(2) Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Phys. Chem. B2005, 109 (48), 22909. doi: 10.1021/jp054815b
-
[3]
(3) Li, Z. P.; Liu, B. H. J. Appl. Electrochem. 2010, 40, 475. doi: 10.1007/s10800-009-0028-7
-
[4]
(4) Petlicki, J.; van de Ven, T. G. M. J. Chem. Soc., Faraday Trans.1998, 94, 2763. doi: 10.1039/a804551h
-
[5]
(5) Liu, B.; Bard, A. J. J. Phys. Chem. B 2002, 106 (49), 12801.doi: 10.1021/jp026824f
-
[6]
(6) Huang, J. S.; Zhang, X. G. Acta Phys. -Chim. Sin. 2006, 22,1551. [黄建书, 张校刚. 物理化学学报, 2006, 22, 1551.]doi: 10.3866/PKU.WHXB20061223
-
[7]
(7) Sawyer, D. T.; Jr, G. C.; Angells, C. T.; Nanni, E. J., Jr.;Tsuchlya, T. Anal. Chem. 1982, 54 (11), 1720. doi: 10.1021/ac00248a014
-
[8]
(8) Liu, Z. X.; Li, Z. P.; Qin, H. Y.; Liu, B. H. J. Power. Sources2011, 196 (11), 4972. doi: 10.1016/j.jpowsour.2011.01.102
-
[9]
(9) Schmidt, T. J.; Stamenkovic, V.; Markovic, N. M.; Ross, P. N.,Jr. Electrochim. Acta 2002, 47 (22), 3765.
-
[10]
(10) Genies, L.; Faure, R.; Durand, R. Electrochim. Acta 1998, 44 (8), 1317.
-
[11]
(11) Jin,W.; Du, H.; Zheng, S. L.; Xu, H. B.; Zhang, Y. J. Phys. Chem. B 2010, 114 (19), 6542. doi: 10.1021/jp102367u
-
[12]
(12) Zhang, C. Z.; Fu-Ren, F. F.; Bard, A. J. J. Am. Chem. Soc. 2009,131 (1), 177. doi: 10.1021/ja8064254
-
[13]
(13) Blizanac, B. B.; Ross, P. N.; Markovic, N. M. J. Phys. Chem. B2006, 110 (10), 4735.
-
[14]
(14) Li, X.; Heryadi, D.; Gewirth, A. A. Langmuir 2005, 21 (20),9251. doi: 10.1021/la0508745
-
[15]
(15) Adzic, R. R.; Strbac, S.; Anastasijevic, N. Mater. Chem. Phys.1989, 22 (3), 349.
-
[16]
(16) Song, C. J.; Zhang, L.; Zhang, J. J. J. Electroanal. Chem. 2006,587 (2), 293. doi: 10.1016/j.jelechem.2005.11.025
-
[17]
(17) Wang, Y.; Zhang, D.; Liu, H. Q. J. Power Sources 2010, 195 (10), 3135. doi: 10.1016/j.jpowsour.2009.11.112
-
[18]
(18) Johnson, E. L.; Pool, K. H.; Hamm, R. E. Anal. Chem. 1966, 38 (2), 183. doi: 10.1021/ac60234a008
-
[19]
(19) Peuchert, M.; Yoneda, T.; Dalla Betta, R. A.; Boudart, M.J. Electrochem. Soc. 1986, 133 (5), 944. doi: 10.1149/1.2108769
-
[20]
(20) Mukerjee, S. J. Appl. Electrochem. 1990, 20 (4), 537. doi: 10.1007/BF01008861
-
[21]
(21) Li, B.; Prakash, J. Electrochem. Commun. 2009, 11 (6), 1162.doi: 10.1016/j.elecom.2009.03.037
-
[22]
(22) Reeve, R.W.; Tseung, A. C. C. J. Electroanal. Chem. 1996, 403 (1), 69.
-
[23]
(23) Li, J. C. M.; Chang, P. J. Chem. Phys. 1955, 23, 518. doi: 10.1063/1.1742022
-
[24]
(24) Sab, N.; Claes, P.; Glibert, J. Electrochim. Acta 1998, 43 (14),2089.
-
[25]
(25) Milers, M. H. J. Appl. Electrochem. 2003, 33 (11), 1011. doi: 10.1023/A:1026270119048
-
[26]
(26) Wagner, F. T.; Ross, P. N., Jr. Appl. Surf. Sci. 1985, 24 (1), 87.doi: 10.1016/0169-4332(85)90214-4
-
[27]
(27) Teliska, M. T.; Murthi, V. S.; Mukerjee, S.; Ramaker, D. E.J. Electrochem. Soc. 2005, 152 (11), A2159.
-
[28]
(28) Nicholson, R. S. Anal. Chem. 1965, 37 (11), 1351. doi: 10.1021/ac60230a016
-
[29]
(29) Tromans, D. Ind. Eng. Chem. Res. 2000, 39 (3), 805. doi: 10.1021/ie990577t
-
[30]
(30) Davis, R. R.; Horvath, G. L.; Tobias, C.W. Electrochim. Acta1967, 12 (3), 287. doi: 10.1016/0013-4686(67)80007-0
-
[31]
(31) Shao, M. H.; Liu, P.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128 (23), 7408. doi: 10.1021/ja061246s
-
[32]
(32) Randin, J. P. Electrochim. Acta 1974, 19 (2), 83. doi: 10.1016/0013-4686(74)85060-7
-
[33]
(33) Che, Y.; Tsushima, M.; Matsumoto, F.; Okajima, T.; Tokuda, K.;Ohsaka, T. J. Phys. Chem. 1996, 100 (51), 20134. doi: 10.1021/jp9625523
-
[34]
(34) Cao, R. Y. Journal of Tongji University 2001, 29, 826. [曹瑞钰. 同济大学学报, 2001, 29, 826.]
-
[1]
-
-
-
[1]
Yan Xin , Yunnian Ge , Zezhong Li , Qiaobao Zhang , Huajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060
-
[2]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
-
[3]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[4]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
-
[5]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[6]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045
-
[7]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[8]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[9]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[10]
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
-
[11]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[12]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[13]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[14]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[15]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[16]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[17]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[18]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[19]
Huijuan Liao , Yulin Xiao , Dong Xue , Mingyu Yang , Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092
-
[20]
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
-
[1]
Metrics
- PDF Downloads(634)
- Abstract views(978)
- HTML views(9)