Citation:
WANG Xiu-Ping, ZHOU De-Feng, YANG Guo-Cheng, SUN Shi-Cheng, LI Zhao-Hui. Structure and Electrical Properties of Ce0.8Nd0.2O1.9-La0.95Sr0.05Ga0.9Mg0.1O3-δ Solid Composite Electrolytes[J]. Acta Physico-Chimica Sinica,
;2014, 30(1): 95-101.
doi:
10.3866/PKU.WHXB201311141
-
Ce0.8Nd0.2O1.9 (NDC) and La0.95Sr0.05Ga0.9Mg0.1O3-δ (LSGM) electrolytes were each prepared using a sol-gel method. NDC-LSGM composite electrolytes were then prepared by adding 0-15% (w, mass fraction) precalcined LSGM powders to NDC sols. The microstructure and phase composition of the pellets were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and energydispersive X-ray spectroscopy (EDS). The electrical conductivities of the pellets were measured using alternative current (AC) impedance spectroscopy. The results showed that all the composites were composed of the cubic fluorite structure, perovskite structure, and secondary phases. The LSGM additive significantly promoted grain growth. The grain boundary conduction increased greatly as a result of the presence of phase interfaces and mitigation of the harmful effects of SiO2 impurities. NL10 was found to have the highest conductivities (σgb=12.15×10-4 S·cm-1, σt=3.49×10-4 S·cm-1 at 400 ℃); these values are 7.62 and 1.91 times higher than those of NDC (σgb=1.41×10-4 S·cm-1, σt=1.2×10-4 S·cm-1). The enhancement of the total conductivity of NL10 is mainly attributed to the large increase in grain boundary conductivity.
-
-
-
[1]
(1) M-Hernandez, A.; V-Castillo, J.; Mogni, L.; Caneiro, A. Int. J. Hydrog. Energy 2011, 36 (24), 15704.
-
[2]
(2) Hart, N. T.; Brandon, N. P.; Day, M. J.; Lapeña-Rey, N.J. Power Sources 2002, 106 (1-2), 42. doi: 10.1016/S0378-7753(01)01035-7
-
[3]
(3) Steele, B. C. H. Solid State Ionics 2000, 129 (1-4), 95. doi: 10.1016/S0167-2738(99)00319-7
-
[4]
(4) Yan, D. Y.; Liu, X. M.; Bai, X. Y.; Pei, L.; Zheng, M. Z.; Zhu, C.J.; Su,W. H. J. Power Sources 2010, 195, 6488.
-
[5]
(5) Molenda, J.; wierczek, K.; Zaj c,W. J. Power Sources 2007,173 (2), 660.
-
[6]
(6) Badwal, S. P. S.; Ciacchi, F. T.; Drennan, J. Solid State Ionics1999, 121 (1-4), 253. doi: 10.1016/S0167-2738(99)00044-2
-
[7]
(7) Abrantes, J. C. C.; Pérez-Coll, D.; Núñez, P.; Frade, J. R.Electrochim. Acta 2003, 48 (19), 2761. doi: 10.1016/S0013-4686(03)00395-5
-
[8]
(8) Xia, Y. J.; Bai, Y. J.;Wu, X. J.; Zhou, D. F.; Liu, X. J.; Meng, J.Int. J. Hydrog. Energy 2011, 36, 6840. doi: 10.1016/j.ijhydene.2011.02.118
-
[9]
(9) Zhao, Y. C.; Xu, Z. R.; Xia, C.; Li, Y. D. Int. J. Hydrog. Energy2013, 38, 1553. doi: 10.1016/j.ijhydene.2012.11.004
-
[10]
(10) Fan, L. D.;Wang, C. Y.; Chen, M. M.; Zhu, B. J. Power Sources2013, 234, 154. doi: 10.1016/j.jpowsour.2013.01.138
-
[11]
(11) Kwon, T. H.; Lee, T.; Yoo, H. I. Solid State Ionics 2011, 195 (1),25. doi: 10.1016/j.ssi.2011.05.002
-
[12]
(12) Cho, S.; Kim, Y. N.; Kim, J. H.; Manthiram, A.;Wang, H. Y.Electrochim. Acta 2011, 56 (16), 5472. doi: 10.1016/j.electacta.2011.03.039
-
[13]
(13) Jang,W. S.; Hyun, S. H.; Kim, S. G. J. Mater. Sci. 2002, 37 (12), 2535. doi: 10.1023/A:1015451910081
-
[14]
(14) Inoue, T.; Setoguchi, T.; Eguchi, K.; Arai, H. Solid State Ionics1989, 35 (3-4), 285. doi: 10.1016/0167-2738(89)90310-X
-
[15]
(15) Ishihara, T.; Matsuda, H.; Takita, Y. J. Am. Chem. Soc. 1994,116, 3801. doi: 10.1021/ja00088a016
-
[16]
(16) Huang, K.; Tichy, R. S.; odenough, J. B. J. Am. Ceram. Soc.1998, 81, 2565. doi: 10.1111/j.1151-2916.1998.tb02662.x
-
[17]
(17) Kharton, V. V.; Marques, F. M. B.; Atkinson, A. Solid State Ionics 2004, 174 (1-4), 135. doi: 10.1016/j.ssi.2004.06.015
-
[18]
(18) Zhang, X. G.; Ohara, S.; Okawa, H.; Maric, R.; Fukui, T. Solid State Ionics 2001, 139 (1-2), 145. doi: 10.1016/S0167-2738(00)00833-X
-
[19]
(19) Xu, D.; Liu, X. M.; Zhu, C. J.;Wang, D. J.; Yan, D. T.;Wang,D. Y.; Su,W. H. J. Rare Earth 2008, 26, 241. doi: 10.1016/S1002-0721(08)60073-3
-
[20]
(20) Xu, D.; Liu, X. M.;Wang, D. J.; Yi, G. Y.; Gao, Y.; Zhang, D.S.; Su,W. H. J. Alloy. Compd. 2007, 429, 292. doi: 10.1016/j.jallcom.2006.04.009
-
[21]
(21) Jo, S. H.; Muralidharan, P.; Kim, D. K. J. Alloy. Compd. 2010,491, 416. doi: 10.1016/j.jallcom.2009.10.207
-
[22]
(22) Hao, G. Y.; Liu, X. M.;Wang, H. P.; Be, H. L.; Pei, L.; Su,W.H. Solid State Ionics 2012, 225, 81. doi: 10.1016/j.ssi.2012.03.005
-
[23]
(23) Medvedev, D.; Mara u, V.; Pikalova, E.; Demin, A.; Tsiakaras,P. J. Power Sources 2013, 221, 217. doi: 10.1016/j.jpowsour.2012.07.120
-
[24]
(24) Xu, D.; Liu, X. M.;Wang, D. J.; Zhu, C. J.; Yan, D. T.; Pei, L.;Su,W. H. Chem. J. Chin. Univ. 2008, 29, 1523. [徐丹, 刘晓梅, 王德军, 朱成军, 严端廷, 裴力, 苏文辉. 高等学校化学学报, 2008, 29, 1523.]
-
[25]
(25) Zhang, T. S.; Hing, P.; Huang, H. T.; Kilner, J. J. Eur. Ceram. Soc. 2002, 22, 27. doi: 10.1016/S0955-2219(01)00240-0
-
[26]
(26) Li, J. G.; Ikegami, T.; Mori, T. Acta Materialia 2004, 52 (8),2221. doi: 10.1016/j.actamat.2004.01.014
-
[27]
(27) Pikalova, E. Yu. Murashkina, A. A.; Mara u, V. I.; Demin, A.K.; Strekalovsky, V. N.; Tsiakaras, P. E. Int. J. Hydrog. Energy2011, 36 (10), 6175. doi: 10.1016/j.ijhydene.2011.01.132
-
[28]
(28) Kahlauoi, M.; Inoubli, A.; Chefi, S.; Kouki, A.; Madani, A.;Chefi, C. Ceram. Int. 2013, 39 (6), 6175. doi: 10.1016/j.ceramint.2013.01.036
-
[29]
(29) Zhou, D. F.; Zhu, J. X.; Xia, Y. J.; Zhao, G. C.; Meng, J. Chin. J. Inorg. Chem. 2010, 26 (1), 91. [周德凤, 朱建新, 夏燕杰, 赵桂春, 孟健. 无机化学学报, 2010, 26 (1), 91.]
-
[30]
(30) Guo, X.;Waser, R. Prog. Mater. Sci. 2006, 51 (2), 151. doi: 10.1016/j.pmatsci.2005.07.001
-
[31]
(31) Wang, X. D.; Mab, Y.; Raza, R.; Muhammed, M.; Zhu, B.Electrochem. Commun. 2008, 10, 1617. doi: 10.1016/j.elecom.2008.08.023
-
[32]
(32) Zhang, Z.; Zhang, H.; Liu, C. F.; Liu, Y. L.; Li, Z. C. Materials Science and Engineering of Powder Metalluray 2011, 16 (5),682. [张哲, 张鸿, 刘超峰, 刘玉龙, 李志成. 粉末冶金材料科学与工程, 2011, 16 (5), 682.]
-
[33]
(33) Guo, X.; Sigle,W.; Maier, J. J. Am. Ceram. Soc. 2003, 86, 77.doi: 10.1111/jace.2003.86.issue-1
-
[34]
(34) Zhang, T. S.; Ma, J.; Chan, S. H.; Kilner, J. A. Solid State Ionics2005, 176 (3-4), 377. doi: 10.1016/j.ssi.2004.07.022
-
[35]
(35) Schouler, E.; Giroud, G.; Kleitz, M. J. Chem. Phys. 1973, 70,1309.
-
[36]
(36) Rahmawati, F.; Prijamboedi, B.; Soepriyanto, S.; Ismunandar.Int. J. Min. Met. Mater. 2012, 19 (9), 863. doi: 10.1007/s12613-012-0640-0
-
[37]
(37) Cho, Y. H.; Cho, P. S.; Auchterlonie, G.; Kim, D. K.; Lee, J. H.;Kim, D. Y.; Park, H. M.; Drennan, J. Acta Materialia 2007, 55 (14), 4807. doi: 10.1016/j.actamat.2007.05.001
-
[38]
(38) Kim, D. K.; Cho, P. S.; Lee, J. H.; Kim, D. Y.; Park, H. M.;Auchterlonie, G.; Drennan, J. Electrochem. Solid State Lett.2007, 10 (5), 91. doi: 10.1149/1.2710959
-
[1]
-
-
-
[1]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[2]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[3]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[4]
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
-
[5]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[6]
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
-
[7]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[8]
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
-
[9]
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
-
[10]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[11]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[12]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[13]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[14]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[15]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[16]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[17]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[18]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[19]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[20]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[1]
Metrics
- PDF Downloads(453)
- Abstract views(886)
- HTML views(19)