Citation: WANG Yue-Hui, WANG Ting, ZHOU Ji. Studies of Enhanced Fluorescence Effects of Europium(Ⅲ) Dipicolinic Acid Complex by Silver Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2014, 30(1): 28-33. doi: 10.3866/PKU.WHXB201311011 shu

Studies of Enhanced Fluorescence Effects of Europium(Ⅲ) Dipicolinic Acid Complex by Silver Nanoparticles

  • Received Date: 22 July 2013
    Available Online: 1 November 2013

    Fund Project: 国家自然科学基金(61302044),广东省自然科学基金(S2012010010646) (61302044),广东省自然科学基金(S2012010010646)电子科技大学中山学院科研启动基金(407YKQ06)资助项目 (407YKQ06)

  • The enhanced fluorescence effect of silver nanoparticles on a europium complex, Eu(Ⅲ)DPA, where DPA is dipicolinic acid (C7H5NO4), with deionized (DI) water, heavy water, ethanol, and dimethylformamide as solvents, was studied. The results indicated that with increasing silver nanoparticle concentration, the intensities of the electric dipole transition (5D07F2)and magnetic dipole transition (5D07F1) first increased and then decreased, and the enhancement efficiency of 5D07F2 was higher than that of 5D07F1. The enhanced fluorescence effect of silver nanoparticles on Eu(Ⅲ)DPA was maximum in ethanol. In the DI water, heavy water, and ethanol solution systems, the asymmetric ratio increased significantly, but there was little change in the dimethylformamide solution system. The observed silver nanoparticle dependence of the luminescent intensity of Eu(Ⅲ)DPA was considered to be the result of stronger coupling between the surface plasmon resonance and the excited luminescence centers, and reabsorption of the surface plasmon resonance of silver nanoparticles.

  • 加载中
    1. [1]

      (1) Malicka, J.; Gryaynski, I.; Fang J.; Kusba, J.; Lakowicz, J. R.Anal. Biochem. 2003, 315, 160. doi: 10.1016/S0003-2697(02)00710-8

    2. [2]

      (2) Podolskiy, V. A.; Sarychev, A. K.; Narimanov, E. E. J. Optic A2005, 7, S32.

    3. [3]

      (3) Wang, Y. H.; Shen, J. H. Acta Phys. -Chim. Sin. 2012, 28, 1314.[王悦辉, 沈建红. 物理化学学报, 2012, 28, 1314.] doi: 10.3866/PKU.WHXB201203292

    4. [4]

      (4) Ipe, B. I.; Mahima, S.; Thomas, K. G. J. Am. Chem. Soc. 2003,125, 7174. doi: 10.1021/ja0341182

    5. [5]

      (5) Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.;Koel, B. E.; Requicha, A. A. G. Nature Materials 2003, 2, 229.

    6. [6]

      (6) Haes, A. J.; Chang, L.; Klein,W. L.; Van-Duyne, R. P. J. Am. Chem. Soc. 2005, 127, 2264.

    7. [7]

      (7) Fu, Y.; Zhang, J.; Lakowicz, J. R. Biochemical and Biophysical Research Communications 2008, 376, 712. doi: 10.1016/j.bbrc.2008.09.062

    8. [8]

      (8) Szmacinski, H.; Ray, K.; Lakowicz, J. R. Analytical Biochemistry 2009, 385, 358. doi: 10.1016/j.ab.2008.11.025

    9. [9]

      (9) Fu, Y.; Jian, Z.; Lakowicz, J. R. J. Phys. Chem. C 2011, 115,7202. doi: 10.1021/jp109617h

    10. [10]

      (10) Kumar, J.; Thomas, K. G. J. Phys. Chem. Lett. 2011, 2, 610. doi: 10.1021/jz2000613

    11. [11]

      (11) Ming, T.; Zhao, L.; Chen, H. J.;Woo, K. C.;Wang, J. F.; Lin, H.Q. Nano Lett. 2011, 11, 2296. doi: 10.1021/nl200535y

    12. [12]

      (12) Fu, Y.; Zhang, J.; Lakowicz, J. R. J. Am. Chem. Soc. 2010, 132,5540. doi: 10.1021/ja9096237

    13. [13]

      (13) Fu, Y.; Lakowicz, J. R. J. Phys. Chem. C 2010, 114, 7492. doi: 10.1021/jp911407c

    14. [14]

      (14) Szmacinski, H.; Lakowicz, J. R. Anal. Chem. 2008, 80, 6260.doi: 10.1021/ac8003055

    15. [15]

      (15) Zhang, J.; Fu,Y.; Liang, D.; Zhao, R.Y.; Lakowicz, J. R. Anal. Chem. 2009, 81, 883. doi: 10.1021/ac801932m

    16. [16]

      (16) Aslan, K.; Geddes, C. D. Anal. Chem. 2009, 81, 6913. doi: 10.1021/ac900973r

    17. [17]

      (17) Lakowicz, J. R.; Malicka, J. D.; Auria, S. Anal. Biochem. 2003,320, 13. doi: 10.1016/S0003-2697(03)00351-8

    18. [18]

      (18) Gryczynski, Z.; Borejdo, J.; Calander, N. Anal. Biochem. 2006,356, 125.

    19. [19]

      (19) Lakowicz, J. R. Anal. Biochem. 2001, 298, 1.

    20. [20]

      (20) Nabika, H. S.; Deki, S. Eur. Phys. J. D 2003, 24, 369.

    21. [21]

      (21) Nabika, H.; Deki, S. J. Phys. Chem. B 2003, 107, 9161. doi: 10.1021/jp035741b

    22. [22]

      (22) Selvan, S. T.; Hayakawa, T.; Nogami, M. J. Phys .Chem. B1999, 103, 7064. doi: 10.1021/jp9902755

    23. [23]

      (23) Wang, Y. H.; Zhou, X. R.; Zhou, J. Materials Letters 2008, 62,3582. doi: 10.1016/j.matlet.2008.04.005

    24. [24]

      (24) Wang, Y. H.; Zhou, J.;Wang, T. Materials Letters 2008, 62,1937. doi: 10.1016/j.matlet.2007.10.045

    25. [25]

      (25) Wang, Y. H.; Zhou, J.;Wang, T. Chin. J. Inorg. Chem. 2008, 24,409. [王悦辉, 周济, 王婷. 无机化学学报, 2008, 24,409.]

    26. [26]

      (26) Swarnabala, G.; Rajasekharan, M. V. Inorg. Chem. 1998, 37,1483. doi: 10.1021/ic971261l

    27. [27]

      (27) Rexwinkel, S. C.; Meskers, S. C. J.; Dekkers, H. P. J. M.; Riehl,J. P. J. Phys. Chem. 1992, 96, 5725.

    28. [28]

      (28) Tang, R. R.; Yan, Z. E.; u, C. C.; Luo,Y. M. Chem. J. Chin. Univ. 2006, 27, 472. [唐瑞仁, 严子耳, 郭灿城, 罗一鸣. 高等学校化学学报, 2006, 27, 472.]


  • 加载中
    1. [1]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    16. [16]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(723)
  • Abstract views(993)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return