Citation:
GUI Ming-Sheng, WANG Peng-Fei, YUAN Dong, TANG Miao-Miao. Preparation and Visible Light Photocatalytic Activity of 3D-NiO/Bi7.47Ni0.53O11.73 Photocatalysts[J]. Acta Physico-Chimica Sinica,
;2013, 29(12): 2608-2614.
doi:
10.3866/PKU.WHXB201310312
-
Three-dimensional (3D)-NiO/Bi7.47Ni0.53O11.73 (BiNiO) microspheres were synthesized by a mixed solvothermal process in the presence of urea. The catalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), and photodegradation of methyl orange (MO). The results show that the composite catalysts are composed of NiO nanosheets and 3D-NiO/Bi7.47Ni0.53O11.73 microspheres. The sample BiNiO-300, which was prepared by heating the precursor at 300 ℃ for 2 h, had the best photocatalytic activity: after visible-light irradiation for 3 h, the decolorization of an MO solution was 98%.
-
Keywords:
-
Composite
, - Photocatalytic,
- Visible light,
- Methyl orange
-
-
-
-
[1]
(1) Chen, X.; Mao, S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535
-
[2]
(2) Kozhummal, R.; Yang, Y.; Güder, F.; Hartel, A.; Lu, X.;Küçükbayrak, U. M.; Mateo-Alonso, A.; Elwenspoek, M.;Zacharias, M. ACS Nano 2012, 6, 7133. doi: 10.1021/nn302188q
-
[3]
(3) Yang, H. P.; Zhang, Y. C.; Fu, X. F.; Song, S. S.;Wu, J. M. Acta Phys. -Chim. Sin. 2013, 29, 1327. [杨汉培, 张颖超, 傅小飞,宋双双, 吴俊明. 物理化学学报, 2013, 29, 1327.] doi: 10.3866/PKU.WHXB201303212
-
[4]
(4) Hou, J. G.; Cao, R.;Wang, Z.; Jiao, S. Q.; Zhu, H. M.J. Hazard. Mater. 2012, 217-218, 177.
-
[5]
(5) Hou, J. G.;Wang, Z.; Jiao, S. Q.; Zhu, H. M. Crystengcomm2012, 14, 5923. doi: 10.1039/c2ce25504a
-
[6]
(6) Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.;Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
-
[7]
(7) Hou, J. G.; Cao, R.;Wang, Z. Dalton Trans. 2011, 40, 4038. doi: 10.1039/c0dt01847c
-
[8]
(8) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X. Nat. Mater. 2010, 9, 559. doi: 10.1038/nmat2780
-
[9]
(9) Hou, J. G.;Wang, Z.; Kan,W. B.; Jiao, S. Q.; Zhu, H. M.;Kumar, R. V. J. Mater. Chem. 2012, 22, 7291. doi: 10.1039/c2jm15791h
-
[10]
(10) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8,76. doi: 10.1038/nmat2317
-
[11]
(11) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
-
[12]
(12) Yu, J. C.; Zhang, L. Z.; Zheng, Z. Chem. Mater. 2003, 15,2280. doi: 10.1021/cm0340781
-
[13]
(13) Yang, G. R.; Zhang, Q.; Chang,W.; Yan,W. Journal of Alloys and Compounds 2013, 580, 29. doi: 10.1016/j.jallcom.2013.05.083
-
[14]
(14) Gui, M. S.; Zhang,W. D. Journal of Physics and Chemistry of Solids 2012, 73, 1342. doi: 10.1016/j.jpcs.2012.06.009
-
[15]
(15) Yang, X. F.; Cui, H. Y.; Yang, L.; Qin, J. L.; Zhang, R. X.; Tang,H. ACS Catal. 2013, 3, 363. doi: 10.1021/cs3008126
-
[16]
(16) Chen, H. Y.; Lo, S. L.; Ou, H. H. Applied Catalysis B: Environmental 2013, 142-143, 65.
-
[17]
(17) Jagadale, T. C.; Takale, S. P.; Sonawane, R. S.; Joshi, H. M.;Patil, S. I.; Kale, B. B.; Ogale, S. B. J. Phys. Chem. C 2008,112, 14595. doi: 10.1021/jp803567f
-
[18]
(18) Yang, L. B.; Jiang, X.; Ruan,W. D.; Yang, J. X.; Zhao, B.; Xu,W. Q.; Lombardi, J. R. J. Phys. Chem. C 2009, 113, 16226. doi: 10.1021/jp903600r
-
[19]
(19) Wang, J. M.; Li, C.; Zhuang, H.; Zhang, J. H. Food Control2013, 34, 372. doi: 10.1016/j.foodcont.2013.04.046
-
[20]
(20) Ye, L. Q.; Liu, J. Y.; Zhuo, J.; Peng, T. Y.; Zan, L. Applied Catalysis B: Environmental 2013, 142-143, 1.
-
[21]
(21) Lin, H.W.; Liu, H. B.; Qian, X. M.; Lai, S.W.; Li, Y. J.; Chen,N.; Ouyang, C. B.; Che, C. M.; Li, Y. L. Inorg. Chem. 2011, 50,7749. doi: 10.1021/ic200900a
-
[22]
(22) Su, J. Z.; Guo, L. J.; Bao, N. Z.; Grimes, C. A. Nano Lett. 2011,11, 1928. doi: 10.1021/nl2000743
-
[23]
(23) Qian, X. M.; Liu, H. B.; Chen, N.; Zhou, H. Q.; Sun, L. F.; Li,Y. J.; Li, Y. L. Inorg. Chem. 2012, 51, 6771. doi: 10.1021/ic300471j
-
[24]
(24) Zhao, G.; Liu, S.W.; Lu, Q. F.; Xu, F. X.; Su, H. Y. Journal of Alloys and Compounds 2013, 578, 12. doi: 10.1016/j.jallcom.2013.05.022
-
[25]
(25) Zhang, J.; Cui, H.;Wang, B.; Li, C.; Zhai, J. P.; Li, Q. Chemical Engineering Journal 2013, 223, 737. doi: 10.1016/j.cej.2012.12.065
-
[26]
(26) Zhang, P.; Shao, C. L.; Zhang, M. Y.; Guo, Z. C.; Mu, J. B.;Zhang, Z. Y.; Zhu, X.; Liu, Y. C. Journal of Hazardous Materials 2012, 217-218, 422.
-
[27]
(27) An, J. J.; Zhu, L. H.;Wang, N.; Song, Z.; Yang, Z. Y.; Du, D. Y.;Tang, H. Q. Chemical Engineering Journal 2013, 219, 225. doi: 10.1016/j.cej.2013.01.013
-
[28]
(28) Zhu, X. Q.; Zhang, J. L.; Chen, F. Applied Catalysis B: Environmental 2011, 102, 316. doi: 10.1016/j.apcatb.2010.12.019
-
[29]
(29) Gui, M. S.; Zhang,W. D. Nanotechnology 2011, 22,265601. doi: 10.1088/0957-4484/22/26/265601
-
[30]
(30) Shang, M.;Wang,W. Z.; Zhang, L.; Sun, S. M.;Wang, L.;Zhou, L. J. Phys. Chem. C 2009, 113, 14727. doi: 10.1021/jp9045808
-
[31]
(31) Ge, M.; Li, Y. F.; Liu, L.; Zhou, Z.; Chen,W. J. Phys. Chem. C2011, 115, 5220. doi: 10.1021/jp108414e
-
[32]
(32) Shang, M.;Wang,W. Z.; Xu, H. L. Cryst. Growth Des. 2009, 9,991. doi: 10.1021/cg800799a
-
[33]
(33) Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.;Wang, L. M.;Zhang, X. B. J. Mater. Chem. 2012, 22, 2844.
-
[34]
(34) Zhao, D.; Chen, C. C.; Zhao, J. C. J. Phys. Chem. C 2009, 113,13160. doi: 10.1021/jp9002774
-
[35]
(35) Marto, J.; Marcos, P. S.; Trindade, T.; Labrincha, J. A.J. Hazard. Mater. 2009, 163, 36. doi: 10.1016/j.jhazmat.2008.06.056
-
[36]
(36) Wang, H.; Xie, J.; Duan, M. Chin. J. Inorg. Chem. 2011, 27,321. [王虎, 谢娟, 段明, 无机化学学报, 2011, 27,321.]
-
[37]
(37) Li, M. Y.; Shang,W.;Wang, X. L. China Environment Science2009, 29, 512. [李明玉, 尚微, 王心乐. 中国环境科学,2009, 29, 512.]
-
[1]
-
-
-
[1]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[2]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[3]
Junjie TANG , Yunting ZHANG , Zhengjiang LIU , Jiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420
-
[4]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[5]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[6]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[7]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[9]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[10]
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
-
[11]
Ruolin CHENG , Yue WANG , Xiyao NIU , Huagen LIANG , Ling LIU , Shijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424
-
[12]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[13]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[14]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[15]
Yihan Xue , Xue Han , Jie Zhang , Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072
-
[16]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[17]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[18]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[19]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[20]
Jiajia Wang , Sibo Huang , Xijing Gao , Chaoxun Liu , Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050
-
[1]
Metrics
- PDF Downloads(793)
- Abstract views(925)
- HTML views(18)