Citation: LIU Yuan, LONG Mei, XIE Meng-Xia. Mechanism of Interaction between Chrysin and Different Configurations of Human Serum Albumin[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2647-2654. doi: 10.3866/PKU.WHXB201310311 shu

Mechanism of Interaction between Chrysin and Different Configurations of Human Serum Albumin

  • Received Date: 28 June 2013
    Available Online: 31 October 2013

    Fund Project: 内蒙古自治区自然科学基金(2012MS0212)资助项目 (2012MS0212)

  • The mechanism of the interaction between Chrysin (CHR) and human serum albumin (HSA) was investigated using various spectroscopic techniques. It was found that CHR can induce HSA fluorescence emission quenching by static process. Additionally, HSA caused a significant red shift in the ultraviolet absorption of CHR. This indicated that binding with a protein can result in dissociation of the phenolic hydroxyl in CHR. HSA can also cause CHR fluorescence emission. The binding constants of CHR and HAS were calculated based on the fluorescence quenching and emission modes. The results obtained using these two methods were consistent. The binding constant (KA) values at pH 7.4 were (9.97±0.24)×104 and (9.75±0.11)×104 L·mol-1, respectively; and the ratio of combination was 1:1. The binding constants decreased gradually with decreasing the pH value. This is related to conformational changes in the protein. The protein is partly denatured at pH 3.5, with the site Ⅱ in the HSA opening chain. It was found that CHR was located at site I, which is in subdomain ⅡA of HAS. Based on molecular modeling, the mechanism of the interaction between CHR and HAS was investigated.

  • 加载中
    1. [1]

      (1) Soares, S.; Mateus, N.; Freitas, V. D. J. Agric. Food Chem.2007, 55, 6726. doi: 10.1021/jf070905x

    2. [2]

      (2) Yang, Y. M.; Hu, Q. L.; Fan, Y. L.; Shen, H. S. SpectrochimicaActa Part A 2008, 69, 432. doi: 10.1016/j.saa.2007.04.019

    3. [3]

      (3) Li, D. J.; Zhu, J. F.; Jin, J.; Yao, X. J. Journal of MolecularStructure 2007, 846, 34. doi: 10.1016/j.molstruc.2007.01.020

    4. [4]

      (4) Kanakias, C. D.; Nafisi, S.; Rajai, M.; Shadaloi, A.; Tarantilis, P.A.; Polissiou, M. J.; Bariyanga, J.; Tajmir-Riahi, H. A.Spectroscopy 2009, 23, 29. doi: 10.1155/2009/154321

    5. [5]

      (5) Ma, J.; Liu, Y.; Xie, M. X. Spectroscopy and Spectral Analysis2012, 32 (1), 1. [马纪, 刘媛, 谢孟峡. 光谱学与光谱分析, 2012, 32 (1), 1.]

    6. [6]

      (6) Ma, G. Z.; Tan, F.; Jiang, Y. J.; Zheng, K.W.; Guo, M.; Yu, Q.C. Acta Phys. -Chim. Sin. 2005, 21 (2), 123. [马国正, 谭非,蒋勇军, 郑柯文, 郭明, 俞庆森. 物理化学学报, 2005, 21 (2),123.] doi: 10.3866/PKU.WHXB20050203

    7. [7]

      (7) Guo, Q. L.; Li, R.; Jiang, F. L.; Tu, J. C.; Li, L.W.; Liu, Y. ActaPhys. -Chim. Sin. 2009, 25 (10), 2147. [郭清莲, 李冉, 蒋风雷, 涂建成, 李林尉, 刘义. 物理化学学报, 2009, 25 (10),2147.] doi: 10.3866/PKU.WHXB20091112

    8. [8]

      (8) Twine, S. M.; re, M. G.; Morton, P. Arch. Biochem. Biophys.2003, 414, 83. doi: 10.1016/S0003-9861(03)00173-5

    9. [9]

      (9) Yamasaki, K.; Maruyama, T.; Yoshimoto, K.; Tsutsumi, Y.Biochim. Biophys. Acta 1999, 1432, 313. doi: 10.1016/S0167-4838(99)00098-9

    10. [10]

      (10) Ahmad, B.; Ankita; Khan, R. H. Arch. Biochem. Biophys. 2005,437, 159. doi: 10.1016/j.abb.2005.03.013

    11. [11]

      (11) Sakai, T.; Yamasaki, K.; Sako, T.; Kragh, H. U.; Suenaga, A.;Otagiri, M. Pharm. Res. 2001, 18 (4), 520. doi: 10.1023/A:1011014629551

    12. [12]

      (12) Zanoli, P.; Avalloneb, R.; Baraldi, M. Fitoterapia 2000, 71,117. doi: 10.1016/S0367-326X(00)00186-6

    13. [13]

      (13) Castro, G. T.; Ferretti, F. H.; Blanco, S. E. Spectrochimica ActaPart A 2005, 62, 657. doi: 10.1016/j.saa.2005.02.013

    14. [14]

      (14) Friedman, M.; Jurgens, H. S. J. Agric. Food Chem. 2000, 48,2101. doi: 10.1021/jf990489j

    15. [15]

      (15) Tommasini, S.; Calabro, M. L.; Donato, P. J. Pharm. Biomed.Anal. 2004, 35, 389. doi: 10.1016/S0731-7085(03)00586-7

    16. [16]

      (16) Qin, C.; Xie, M. X.; Liu, Y. Biomacromolecules 2007, 8,2182. doi: 10.1021/bm070319c

    17. [17]

      (17) Liu, Y.; Xie, M. X.; Jiang, M.;Wang, Y. D. SpectrochimicaActa Part A 2005, 61, 2245. doi: 10.1016/j.saa.2004.09.004

    18. [18]

      (18) Rasoulzadeh, F.; Jabary, H. N.; Naseri, A.; Rashidi, M. R.Spectrochimica Acta Part A 2009, 72, 190. doi: 10.1016/j.saa.2008.09.021

    19. [19]

      (19) Yu, Z. L.; Li, D. J.; Ji, B. M.; Chen, J. J. Journal of MolecularStructure 2008, 889, 422. doi: 10.1016/j.molstruc.2008.03.013

    20. [20]

      (20) Papadopoulou, A.; Green, R. J.; Frazier, R. A. J. Agric. FoodChem. 2005, 53, 158. doi: 10.1021/jf048693g

    21. [21]

      (21) Maurice, R.; Eftink; Camillo, A.; Ghiron. Analyt. Biochem.1981, 114, 199. doi: 10.1016/0003-2697(81)90474-7

    22. [22]

      (22) Lakowicz, J. R. Principles of Fluorescence Spectroscopy;Plenum Press: New York, 1983; p 257.

    23. [23]

      (23) Fang, R.; Leng, X. J.;Wu, X.; Li, Q.; Hao, R. F.; Ren, F. Z.;Jing, H. Spectroscopy and Spectral Analysis 2012, 32 (1), 108.[方茹, 冷小京, 吴夏, 李琦, 郝瑞芳, 任发政, 景浩.光谱学与光谱分析, 2012, 32 (1), 108.]

    24. [24]

      (24) Bhattacharya, J.; Bhattacharya, M.; Chakrabarty, A. S.;Chaudhury, U.; Poddar, R. K. Biochem. Pharmacology 1994,47, 2049. doi: 10.1016/0006-2952(94)90080-9

    25. [25]

      (25) Sytnik, A.; Lritvinyuk, I. Proceedings of the National Academyof Sciences of the United States of America 1996, 93 (23),12959. doi: 10.1073/pnas.93.23.12959


  • 加载中
    1. [1]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    2. [2]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    5. [5]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    8. [8]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    9. [9]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    10. [10]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    11. [11]

      Jiming XIYukang TENGRui ZHANGZhenzhong LU . Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 847-854. doi: 10.11862/CJIC.20240367

    12. [12]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    13. [13]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    14. [14]

      Youbo HUDonggang LIChanghua SUNZhenzhong LUSongjun GU . Coordination polymers based on anthracene- and pyrene-derived ligands: Crystal structure, fluorescent property, and framework isomerization. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1681-1688. doi: 10.11862/CJIC.20250004

    15. [15]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    18. [18]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    19. [19]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    20. [20]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

Metrics
  • PDF Downloads(516)
  • Abstract views(983)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return