Citation:
LIU Shuai, LI Shu-Shi, LIU Dong-Jia, WANG Chang-Sheng. Site Preferences of Adenine Hydrogen Bonding to Peptide Amides[J]. Acta Physico-Chimica Sinica,
;2013, 29(12): 2551-2557.
doi:
10.3866/PKU.WHXB201310293
-
A detailed understanding of how nucleobases interact with protein peptides will allow us to gain valuable insights into how these interesting biological molecules could be used to construct complex nanostructures and materials. In this work, the optimal structures and binding energies of 20 hydrogenbonded complexes, which contained the nucleic acid base adenine, N-methylacetamide, a glycine dipeptide, and an alanine dipeptide, were obtained. The site preferences of adenine hydrogen bonding to peptide amides were explored. The calculation results show that adenine can use two binding sites (site A1 and site A2) to form N―H…N or N―H…O=C hydrogen-bonded complexes with N-methylacetamide; the N―H…N hydrogen-bonded complexes formed at site A1 of adenine are more stable. The calculation results also show that the glycine dipeptide can use either site Gly7 or site Gly5, and the alanine dipeptide can use either site Ala7 or site Ala5 to form hydrogen-bonded complexes with adenine; the hydrogenbonded complexes formed at site Gly7 of the glycine dipeptide and at site Ala7 of the alanine dipeptide are more stable. The hydrogen-bonded complexes formed by adenine and a dipeptide have larger negative binding energies than the complexes formed by adenine and N-methylacetamide, indicating that the interaction between adenine and the peptide is preferred to that between adenine and N-methylacetamide. The nature of the hydrogen bonding in these complexes was further explored based on the atoms in molecules calculations and the natural bond orbital analysis.
-
-
-
[1]
(1) Hobza, P.; Sponer, J. Chem. Rev. 1999, 99, 3247. doi: 10.1021/cr9800255
-
[2]
(2) Kennedy, R. J.; Tsang, K. Y.; Kemp, D. S. J. Am. Chem. Soc.2002, 124, 934. doi: 10.1021/ja016285c
-
[3]
(3) Jones, S.; Heyningen, P.; Berman, H. M.; Thornton, J. M. J. Mol. Biol. 1999, 287, 877. doi: 10.1006/jmbi.1999.2659
-
[4]
(4) Mukherjee, S.; Majumdar, M.; Bhattacharyya, D. J. Phys. Chem. B 2005, 109, 10484. doi: 10.1021/jp0446231
-
[5]
(5) Gu, J.;Wang, J.; Leszczynski, J. J. Phys. Chem. B 2006, 110,13590. doi: 10.1021/jp061360x
-
[6]
(6) Cheng, A. C.; Chen,W.W.; Fuhrmann, C. N.; Frankel, A. D. J. Mol. Biol. 2003, 327, 781. doi: 10.1016/S0022-2836(03)00091-3
-
[7]
(7) Allers, J.; Shamoo, Y. J. Mol. Biol. 2001, 311, 75. doi: 10.1006/jmbi.2001.4857
-
[8]
(8) Rutledge, L. R.; Campbell-Verduyn, L. S.; Hunter, K. C.;Wetmore, S. D. J. Phys. Chem. B 2006, 110, 19652. doi: 10.1021/jp061939v
-
[9]
(9) Ma, G. Z.; Qiu, Y. F.; Nan, J. M.; Xiao, X. Acta Phys. -Chim. Sin. 2008, 24, 1917. [马国正, 求亚芳, 南俊民, 肖信. 物理化学学报, 2008, 24, 1917.] doi: 10.3866/PKU.WHXB20081031
-
[10]
(10) Fan, D.; Liu, Z. M.; Jin, H.W.; Zhang, L. R. Acta Phys. -Chim. Sin. 2011, 27, 1223. [樊迪, 刘振明, 金宏威, 张亮仁. 物理化学学报, 2011, 27, 1223.] doi: 10.3866/PKU.WHXB20110439
-
[11]
(11) Schyman, P.; Danielsson, J.; Pinak, M.; Laaksonen, A. J. Phys. Chem. A 2005, 109, 1713. doi: 10.1021/jp045686m
-
[12]
(12) Rutledge, L. R.; Churchill, C. D. M.;Wetmore, S. D. J. Phys. Chem. B 2010, 114, 3355.
-
[13]
(13) Leavens, F. M. V.; Churchill, C. D. M.;Wang, S.;Wetmore, S.D. J. Phys. Chem. B 2011, 115, 10990. doi: 10.1021/jp205424z
-
[14]
(14) Chocholousova, J.; Feig, M. J. Phys. Chem. B 2006, 110,17240. doi: 10.1021/jp0627675
-
[15]
(15) Qin, S.; Zhou, H. X. J. Phys. Chem. B 2008, 112, 5955. doi: 10.1021/jp075919k
-
[16]
(16) Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. B 2004, 108,3335. doi: 10.1021/jp036901m
-
[17]
(17) Xu, B.; Schones, D. E.;Wang, Y.; Liang, H.; Li, G. PLoS ONE2013, 8, e52460.
-
[18]
(18) Zhang, Y.; Shen, H.; Zhang, M.; Li, G. J. Phys. Chem. B 2013,117, 982. doi: 10.1021/jp309682t
-
[19]
(19) Shen, H.; Sun, H.; Li, G. PLoS Comput. Biol. 2010, 8, e1002851.
-
[20]
(20) Galetich, I.; Stepanian, S. J.; Shelkovsky, V.; Kosevich, M.;Bla i, Y. P.; Adamowicz, L. J. Phys. Chem. A 2000, 104,8965. doi: 10.1021/jp000755s
-
[21]
(21) Alkorta, I.; Elguero, J. J. Phys. Chem. B 2003, 107, 5306.
-
[22]
(22) Lee, J.; Kim, J. S.; Seok, C. J. Phys. Chem. B 2010, 114,7662. doi: 10.1021/jp1017289
-
[23]
(23) Rutledge, L. R.; Navarro-Whyte, L.; Peterson, T. L.;Wetmore,S. D. J. Phys. Chem. A 2011, 115, 12646. doi: 10.1021/jp203248j
-
[24]
(24) Liu, D. J.;Wang, C. S. Acta Phys. -Chim. Sin. 2012, 28, 2809.[刘冬佳, 王长生. 物理化学学报, 2012, 28, 2809.] doi: 10.3866/PKU.WHXB201209263
-
[25]
(25) Li, Y.;Wang, C. S. Sci. China. Chem. 2011, 54, 1759. doi: 10.1007/s11426-011-4411-y
-
[26]
(26) Li,Y.; Jiang, X. N.;Wang, C. S. J. Comput. Chem. 2011, 32,953. doi: 10.1002/jcc.v32.5
-
[27]
(27) Li,Y.;Wang, C. S. J. Comput. Chem. 2011, 32, 2765. doi: 10.1002/jcc.v32.13
-
[28]
(28) Huang, C. Y.; Li, Y.;Wang, C. S. Sci. China. Chem. 2013, 56,238. doi: 10.1007/s11426-012-4715-6
-
[29]
(29) Wang, C. S.; Liu, P.; Yu, N. Acta Phys. -Chim. Sin. 2013, 29,1173. [王长生, 刘朋, 于楠. 物理化学学报, 2013, 29,1173.] doi: 10.3866/PKU.WHXB201303153
-
[30]
(30) Radoszkowicz, L.; Huppert, D.; Nachliel, E.; Gutman, M. J. Phys. Chem. A 2010, 114, 1017. doi: 10.1021/jp908766e
-
[31]
(31) Bhattacharyya, S.; Stankovich, M. T.; Truhlar, D. G.; Gao, J. L.J. Phys. Chem. A 2007, 111, 5729. doi: 10.1021/jp071526+
-
[32]
(32) Kuppuraj, G.; Sargsyan, K.; Hua, Y. H.; Merrill, A. R.; Lim, C.J. Phys. Chem. B 2011, 115, 7932. doi: 10.1021/jp1118663
-
[33]
(33) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision D.01; Gaussian Inc.:Wallingford, CT, 2004.
-
[34]
(34) Biegler, K. F.; Schonbohm, J.; Bayles, D. J. Comput. Chem.2001, 22, 545.
-
[35]
(35) Zhao, G. J.; Han, K. L. Accounts Chem. Res. 2012, 45, 404. doi: 10.1021/ar200135h
-
[36]
(36) Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B2007, 111, 8940. doi: 10.1021/jp0734530
-
[37]
(37) Scheiner, S. J. Phys. Chem. B 2005, 109, 16132. doi: 10.1021/jp053416d
-
[38]
(38) Scheiner, S. J. Phys. Chem. B 2006, 110, 18670. doi: 10.1021/jp063225q
-
[1]
-
-
-
[1]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[2]
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
-
[3]
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
-
[4]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[5]
Yinglian LI , Chengcheng ZHANG , Xinyu ZHANG , Xinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087
-
[6]
Yanfen PENG , Xinyue WANG , Tianbao LIU , Xiaoshuo WU , Yujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018
-
[7]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[8]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[9]
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
-
[10]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
-
[11]
Kexin Feng , Jie Zhang , Yujia Sun , Qiong Ai , Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045
-
[12]
Caixia Lin , Ting Liu , Zhaojiang Shi , Hong Yan , Keyin Ye , Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107
-
[13]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[14]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[15]
Xiaoyang Li , Xiaowei Huang , Yimeng Zhang , Huan Liu , Shao Jin , Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035
-
[16]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[17]
Aiyi Xin , Jiawei Li , Xinyang Ran , Chuanjiang Fu , Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031
-
[18]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[19]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
-
[20]
Cong-Bin Ji , Ding-Xiong Xie , Mei Chen , Ye-Ying Lan , Bao-Hua Zhang , Ji-Ying Yang , Zheng-Hui Kang , Shu-Jie Chen , Yu-Wei Zhang , Yun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598
-
[1]
Metrics
- PDF Downloads(600)
- Abstract views(869)
- HTML views(28)