Citation:
ZHAO Xue-Ting, DONG Yong-Chun, CHENG Bo-Wen, KANG Wei-Min. Coordination Kinetics of Fe3+ with Membranes Based on Modified PAN Nanofibers with Different Diameters, and Catalytic Effect of Their Complexes on Decomposition of Organic Dye[J]. Acta Physico-Chimica Sinica,
;2013, 29(12): 2513-2522.
doi:
10.3866/PKU.WHXB201310233
-
Membranes produced from modified polyacrylonitrile (PAN) nanofibers with different diameters were prepared by electrospinning and amidoximation. They were then used as ligands to coordinate with Fe3+ for preparing modified PAN nano-fibrous membrane Fe complexes. The coordination kinetics of three modified PAN nano-fibrous membranes with Fe3+ were studied, and the effects of temperature and the Fe3+ initial concentration on the coordination kinetics were also examined. Finally, the catalytic activities of the three modified PAN nano- fibrous membrane Fe complexes were evaluated as heterogeneous Fenton catalysts in the degradation of an organic dye. The effect of fiber diameter on the catalytic activity of the complexes was investigated. The results indicated that within the observed temperature and concentration ranges, the equilibrium data for the coordination of Fe3+ with the modified PAN nano-fibrous membranes correlated with the Langmuir and Freundlich isotherm equations, but the coordination kinetics showed better agreement with the Lagergren second-order equation. Modified PAN nanofibrous membranes with small diameters showed higher Fe- coordinating capacities and reaction rate constants under the same conditions, indicating that they reacted with Fe3+ more easily than the others did. Better catalytic activities for dye degradation were found for the three modified PAN nanofibrous membrane Fe complexes in the dark, and these were further improved by light irradiation. The catalytic activities of the complexes were significantly affected by the nanofiber diameter. The complex prepared using a modified PAN nanofibrous membrane with fibers of an appropriate diameter exhibited the best catalytic activity.
-
-
-
[1]
(1) Janiak, C. Chem. Soc. Dalton Trans. 2003, 14 (6), 2781.
-
[2]
(2) Vassilev, K.; Turmanova, S. Polym. Bull. 2008, 60 (2), 243.
-
[3]
(3) Wu, S. H.; Xie, Q. X.; Zhu, C. Y.; Huang,W. P.; Yang, X. L.;Wu,W. Y. Polym. Mater. Sci. Eng. 2000, 16 (3), 1. [吴世华,解勤兴, 朱常英, 黄唯平, 杨秀檩, 吴文艳. 高分子材料科学与工程, 2000, 16 (3), 1.]
-
[4]
(4) Espenson, J. H. Chemical Kinetics and Reaction Mechanisms,2nd ed.; McGraw-Hill Inc: New York, 1995; pp 1-3.
-
[5]
(5) Xu, Y. Chemical Reaction Kinetics; Chemical Industry Press:Beijing, 2005; pp 151-153. [许越. 化学反应动力学. 北京:化学工业出版社, 2005: 151-153.]
-
[6]
(6) Zhang, D. Y.;Wu, Z. C.; Zhou, K.; Chen, P. G. Polym. Mater. Sci. Eng. 2008, 24 (6), 38. [张宇东, 吴之传, 周凯, 陈培根.高分子材料科学与工程, 2008, 24 (6), 38.]
-
[7]
(7) Dong, Y. C.;Wu, J. N.; Sun, S. T.; Zheng, X.; Han, Z. B.; Liu,C. Y. Journal of Sichuan University (Engineering Science Edition) 2011, 43 (1), 173. [董永春, 武金娜, 孙苏婷, 郑戌,韩振邦, 刘春燕. 四川大学学报(工程科学版), 2011, 43 (1),173.]
-
[8]
(8) Han, Z. B.; Dong, Y. C.; Liu, C. Y. Chem. J. Chin. Univ. 2010,31 (5), 986. [韩振邦, 董永春, 刘春燕. 高等学校化学学报,2010, 31 (5), 986.]
-
[9]
(9) Bagheri, B.; Abdouss, M.; Aslzadeh, M. M.; Shoushtari, A. M.Iran. Polym. J. 2010, 19 (12), 911.
-
[10]
(10) Feng, Q.;Wang, Q. Q.; Tang, B.;Wei, A. F.;Wang, X. Q.;Wei,Q. F.; Huang, F. L.; Cai, Y. B.; Hou, D. Y.; Bi, S. M. Polym. Int.2013, 62 (2), 251. doi: 10.1002/pi.2013.62.issue-2
-
[11]
(11) Kampalanonwat, P.; Supaphol, P. ACS Appl. Mater. Inter. 2010,2 (2), 3619.
-
[12]
(12) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A. 2003, 242 (1), 123. doi: 10.1016/S0926-860X(02)00511-2
-
[13]
(13) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A 2003, 242 (2), 221. doi: 10.1016/S0926-860X(02)00512-4
-
[14]
(14) Vitkovskaya, R. F.; Rumynskaya, I. G.; Romanova, E. P.;Tereshchenko, L. Y. Fiber Chem. 2003, 35 (3), 202. doi: 10.1023/A:1026109923284
-
[15]
(15) Dong, Y. C.; Du, F.; Han, Z. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2114. [董永春, 杜芳, 韩振邦. 物理化学学报, 2008,24 (11), 2114.] doi: 10.3866/PKU.WHXB20081130
-
[16]
(16) Dong, Y. C.; Han, Z. B.; Liu, C. Y.; Du, F. Sci. Total. Environ.2010, 408 (10), 2245. doi: 10.1016/j.scitotenv.2010.01.020
-
[17]
(17) Han, Z. B.; Dong, Y. C.; Dong, S. M. J. Hazard. Mater. 2011,189 (1-2), 241. doi: 10.1016/j.jhazmat.2011.02.026
-
[18]
(18) Dong, Y. C.; Dong,W. J.; Han, Z. B. Catal. Today 2011, 175 (1),299. doi: 10.1016/j.cattod.2011.04.026
-
[19]
(19) Yang, X.W.; Luo, Y. Y. Textbook of Chemical Products: Dyestuffs; Chemical Industry Press: Beijing, 2005; pp 156-541.[杨新玮, 罗钰言. 化工产品手册: 染料. 北京: 化学工业出版社, 2005: 156-541.]
-
[20]
(20) Li, S. F.; Chen, J. P.;Wu,W. T. J. Mol. Catal. B 2007, 47 (3-4),117. doi: 10.1016/j.molcatb.2007.04.010
-
[21]
(21) Feng, Q.;Wang, X. Q.;Wei, Q. F.; Hou, D. Y.;Wei, L.; Liu, X.H.;Wang, Z. Q. Fiber. Polym. 2011, 12 (8), 1025. doi: 10.1007/s12221-011-1025-0
-
[22]
(22) Neghlani, P. K.; Rafizadeh, M.; Taromi, F. A. J. Hazard. Mater.2011, 186 (1), 182. doi: 10.1016/j.jhazmat.2010.10.121
-
[23]
(23) Lee, K. H.; Kim, H. Y.; Khil, M. S.; Ra, Y. M.; Lee, D. R.Polym. 2003, 44 (4), 1287. doi: 10.1016/S0032-3861(02)00820-0
-
[24]
(24) Vassilev, K.; Turmanova, S. Polym. Bull. 2005, 1 (5), 575.
-
[25]
(25) Qin, X. H.;Wang, X.W.; Hu, Z. M.; Liu, Z. F.;Wang, S. Y.Journal of Donghua University (Natural Science) 2005, 31 (6),16. [覃小红, 王新威, 胡祖明, 刘兆峰, 王善元. 东华大学学报(自然科学版), 2005, 31 (6), 16.]
-
[26]
(26) Yordem, O. S.; Papila, M.; Menceloglu, Y. Z. Mater. Des. 2008,29 (1), 34. doi: 10.1016/j.matdes.2006.12.013
-
[27]
(27) Wang, N.; Burugapalli, K.; Song,W.; Hall, J.; Moussy, F.;Zheng, Y. D.; Ma, Y. X.;Wu, Z. T.; Li, K. J. Membr. Sci. 2013,427 (10), 207.
-
[28]
(28) Chen, X.; Chen, N. L. Journal of DongHua University (Natural Science) 2009, 35 (1), 30. [陈霄, 陈南梁. 东华大学学报(自然科学版), 2009, 35 (1), 30.]
-
[1]
-
-
-
[1]
Yu BAI , Jijiang WANG , Long TANG , Erlin YUE , Chao BAI , Xiao WANG , Yuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457
-
[2]
Pingping LU , Shuguang ZHANG , Peipei ZHANG , Aiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411
-
[3]
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
-
[4]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[5]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[6]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[7]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[8]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[9]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[10]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014
-
[11]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[12]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[13]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[14]
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[16]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[17]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[18]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[19]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[20]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[1]
Metrics
- PDF Downloads(570)
- Abstract views(814)
- HTML views(16)