Citation: ZHAO Xue-Ting, DONG Yong-Chun, CHENG Bo-Wen, KANG Wei-Min. Coordination Kinetics of Fe3+ with Membranes Based on Modified PAN Nanofibers with Different Diameters, and Catalytic Effect of Their Complexes on Decomposition of Organic Dye[J]. Acta Physico-Chimica Sinica, ;2013, 29(12): 2513-2522. doi: 10.3866/PKU.WHXB201310233 shu

Coordination Kinetics of Fe3+ with Membranes Based on Modified PAN Nanofibers with Different Diameters, and Catalytic Effect of Their Complexes on Decomposition of Organic Dye

  • Received Date: 12 August 2013
    Available Online: 23 October 2013

    Fund Project: 天津市应用基础与前沿技术重点研究计划(11JCZDJC24600, 11ZCKFGX03200) (11JCZDJC24600, 11ZCKFGX03200)国家自然科学基金(2020773093, 51102178)资助项目 (2020773093, 51102178)

  • Membranes produced from modified polyacrylonitrile (PAN) nanofibers with different diameters were prepared by electrospinning and amidoximation. They were then used as ligands to coordinate with Fe3+ for preparing modified PAN nano-fibrous membrane Fe complexes. The coordination kinetics of three modified PAN nano-fibrous membranes with Fe3+ were studied, and the effects of temperature and the Fe3+ initial concentration on the coordination kinetics were also examined. Finally, the catalytic activities of the three modified PAN nano- fibrous membrane Fe complexes were evaluated as heterogeneous Fenton catalysts in the degradation of an organic dye. The effect of fiber diameter on the catalytic activity of the complexes was investigated. The results indicated that within the observed temperature and concentration ranges, the equilibrium data for the coordination of Fe3+ with the modified PAN nano-fibrous membranes correlated with the Langmuir and Freundlich isotherm equations, but the coordination kinetics showed better agreement with the Lagergren second-order equation. Modified PAN nanofibrous membranes with small diameters showed higher Fe- coordinating capacities and reaction rate constants under the same conditions, indicating that they reacted with Fe3+ more easily than the others did. Better catalytic activities for dye degradation were found for the three modified PAN nanofibrous membrane Fe complexes in the dark, and these were further improved by light irradiation. The catalytic activities of the complexes were significantly affected by the nanofiber diameter. The complex prepared using a modified PAN nanofibrous membrane with fibers of an appropriate diameter exhibited the best catalytic activity.

  • 加载中
    1. [1]

      (1) Janiak, C. Chem. Soc. Dalton Trans. 2003, 14 (6), 2781.

    2. [2]

      (2) Vassilev, K.; Turmanova, S. Polym. Bull. 2008, 60 (2), 243.

    3. [3]

      (3) Wu, S. H.; Xie, Q. X.; Zhu, C. Y.; Huang,W. P.; Yang, X. L.;Wu,W. Y. Polym. Mater. Sci. Eng. 2000, 16 (3), 1. [吴世华,解勤兴, 朱常英, 黄唯平, 杨秀檩, 吴文艳. 高分子材料科学与工程, 2000, 16 (3), 1.]

    4. [4]

      (4) Espenson, J. H. Chemical Kinetics and Reaction Mechanisms,2nd ed.; McGraw-Hill Inc: New York, 1995; pp 1-3.

    5. [5]

      (5) Xu, Y. Chemical Reaction Kinetics; Chemical Industry Press:Beijing, 2005; pp 151-153. [许越. 化学反应动力学. 北京:化学工业出版社, 2005: 151-153.]

    6. [6]

      (6) Zhang, D. Y.;Wu, Z. C.; Zhou, K.; Chen, P. G. Polym. Mater. Sci. Eng. 2008, 24 (6), 38. [张宇东, 吴之传, 周凯, 陈培根.高分子材料科学与工程, 2008, 24 (6), 38.]

    7. [7]

      (7) Dong, Y. C.;Wu, J. N.; Sun, S. T.; Zheng, X.; Han, Z. B.; Liu,C. Y. Journal of Sichuan University (Engineering Science Edition) 2011, 43 (1), 173. [董永春, 武金娜, 孙苏婷, 郑戌,韩振邦, 刘春燕. 四川大学学报(工程科学版), 2011, 43 (1),173.]

    8. [8]

      (8) Han, Z. B.; Dong, Y. C.; Liu, C. Y. Chem. J. Chin. Univ. 2010,31 (5), 986. [韩振邦, 董永春, 刘春燕. 高等学校化学学报,2010, 31 (5), 986.]

    9. [9]

      (9) Bagheri, B.; Abdouss, M.; Aslzadeh, M. M.; Shoushtari, A. M.Iran. Polym. J. 2010, 19 (12), 911.

    10. [10]

      (10) Feng, Q.;Wang, Q. Q.; Tang, B.;Wei, A. F.;Wang, X. Q.;Wei,Q. F.; Huang, F. L.; Cai, Y. B.; Hou, D. Y.; Bi, S. M. Polym. Int.2013, 62 (2), 251. doi: 10.1002/pi.2013.62.issue-2

    11. [11]

      (11) Kampalanonwat, P.; Supaphol, P. ACS Appl. Mater. Inter. 2010,2 (2), 3619.

    12. [12]

      (12) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A. 2003, 242 (1), 123. doi: 10.1016/S0926-860X(02)00511-2

    13. [13]

      (13) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A 2003, 242 (2), 221. doi: 10.1016/S0926-860X(02)00512-4

    14. [14]

      (14) Vitkovskaya, R. F.; Rumynskaya, I. G.; Romanova, E. P.;Tereshchenko, L. Y. Fiber Chem. 2003, 35 (3), 202. doi: 10.1023/A:1026109923284

    15. [15]

      (15) Dong, Y. C.; Du, F.; Han, Z. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2114. [董永春, 杜芳, 韩振邦. 物理化学学报, 2008,24 (11), 2114.] doi: 10.3866/PKU.WHXB20081130

    16. [16]

      (16) Dong, Y. C.; Han, Z. B.; Liu, C. Y.; Du, F. Sci. Total. Environ.2010, 408 (10), 2245. doi: 10.1016/j.scitotenv.2010.01.020

    17. [17]

      (17) Han, Z. B.; Dong, Y. C.; Dong, S. M. J. Hazard. Mater. 2011,189 (1-2), 241. doi: 10.1016/j.jhazmat.2011.02.026

    18. [18]

      (18) Dong, Y. C.; Dong,W. J.; Han, Z. B. Catal. Today 2011, 175 (1),299. doi: 10.1016/j.cattod.2011.04.026

    19. [19]

      (19) Yang, X.W.; Luo, Y. Y. Textbook of Chemical Products: Dyestuffs; Chemical Industry Press: Beijing, 2005; pp 156-541.[杨新玮, 罗钰言. 化工产品手册: 染料. 北京: 化学工业出版社, 2005: 156-541.]

    20. [20]

      (20) Li, S. F.; Chen, J. P.;Wu,W. T. J. Mol. Catal. B 2007, 47 (3-4),117. doi: 10.1016/j.molcatb.2007.04.010

    21. [21]

      (21) Feng, Q.;Wang, X. Q.;Wei, Q. F.; Hou, D. Y.;Wei, L.; Liu, X.H.;Wang, Z. Q. Fiber. Polym. 2011, 12 (8), 1025. doi: 10.1007/s12221-011-1025-0

    22. [22]

      (22) Neghlani, P. K.; Rafizadeh, M.; Taromi, F. A. J. Hazard. Mater.2011, 186 (1), 182. doi: 10.1016/j.jhazmat.2010.10.121

    23. [23]

      (23) Lee, K. H.; Kim, H. Y.; Khil, M. S.; Ra, Y. M.; Lee, D. R.Polym. 2003, 44 (4), 1287. doi: 10.1016/S0032-3861(02)00820-0

    24. [24]

      (24) Vassilev, K.; Turmanova, S. Polym. Bull. 2005, 1 (5), 575.

    25. [25]

      (25) Qin, X. H.;Wang, X.W.; Hu, Z. M.; Liu, Z. F.;Wang, S. Y.Journal of Donghua University (Natural Science) 2005, 31 (6),16. [覃小红, 王新威, 胡祖明, 刘兆峰, 王善元. 东华大学学报(自然科学版), 2005, 31 (6), 16.]

    26. [26]

      (26) Yordem, O. S.; Papila, M.; Menceloglu, Y. Z. Mater. Des. 2008,29 (1), 34. doi: 10.1016/j.matdes.2006.12.013

    27. [27]

      (27) Wang, N.; Burugapalli, K.; Song,W.; Hall, J.; Moussy, F.;Zheng, Y. D.; Ma, Y. X.;Wu, Z. T.; Li, K. J. Membr. Sci. 2013,427 (10), 207.

    28. [28]

      (28) Chen, X.; Chen, N. L. Journal of DongHua University (Natural Science) 2009, 35 (1), 30. [陈霄, 陈南梁. 东华大学学报(自然科学版), 2009, 35 (1), 30.]


  • 加载中
    1. [1]

      Yu BAIJijiang WANGLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A cadmium(Ⅱ) coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe3+ and 4-nitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1217-1226. doi: 10.11862/CJIC.20240457

    2. [2]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    7. [7]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    9. [9]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    11. [11]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    17. [17]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    18. [18]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    19. [19]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    20. [20]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(570)
  • Abstract views(813)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return