Citation:
ZENG Jian-Bang, JIANG Fang-Ming. A Mesoscale Smoothed Particle Hydrodynamics Model for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2013, 29(11): 2371-2384.
doi:
10.3866/PKU.WHXB201309131
-
We develop a model for the multi-disciplinary transport coupled electrochemical reaction processes in lithium-ion batteries via a smoothed particle hydrodynamics numerical approach. This model is based on a mesoscopic treatment to the micropore structures of electrodes. Focusing on the effects of solid active particle size, this work explores the feasibility of using this model for electrode microstructure design. The model results provide detailed distributive information of all the primary and participating parameters, including Li+ concentration in the electrolyte, Li concentration in solid active particles, solid/electrolyte phase potential, and transfer current density. Furthermore, macroscopic parameters such as the output voltage are also determined. Based on the simulation results, the underlying physicochemical fundamentals are analyzed and the relationships between the macroscopic performance of the battery and the size of solid active particles are revealed. The battery having the smallest solid active particles in both electrodes features a more uniform Li distribution inside the particles and a more uniform distribution of electrochemical reactions on the surface of each particle, leading to a higher output voltage.
-
-
-
[1]
(1) Jiang, F. M.; Zeng, J. B.;Wu,W. Adv. Mater. Indus. 2011, 12, 2.[蒋方明, 曾建邦, 吴伟. 新材料产业, 2011, 12, 2.]
-
[2]
(2) Venkatasailanathan, R.; Paul,W. C. N.; Sumitava, D.; Shriram,S.; Richard, D. B.; Venkat, R. S. J. Electrochem. Soc. 2012, 159 (3), R31.
-
[3]
(3) Du,W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.; Shyy,W. Int. J. Heat Mass Transfer 2010, 53 (17-18), 3552. doi: 10.1016/j.ijheatmasstransfer.2010.04.017
-
[4]
(4) Gu,W. B.;Wang, C. Y. J. Electrochem. Soc. 2000, 147 (8),2910. doi: 10.1149/1.1393625
-
[5]
(5) Wang, C. Y.; Gu,W. B.; Liaw, B. Y. J. Electrochem. Soc. 1998,145 (10), 3407. doi: 10.1149/1.1838820
-
[6]
(6) Smith, K.;Wang, C. Y. J. Power Sources 2006, 161, 628. doi: 10.1016/j.jpowsour.2006.03.050
-
[7]
(7) Fang,W. F.; Kwon, O. J.;Wang, C. Y. Int. J. Energy Res. 2010,34 (2), 107. doi: 10.1002/er.1652
-
[8]
(8) Ye, Y. H.; Shi, Y. X.; Cai, N. S.; Lee, J. J.; He, X. M. J. Power Sources 2012, 199, 227. doi: 10.1016/j.jpowsour.2011.10.027
-
[9]
(9) Zhang, X.; Shyy,W.; Sastry, A. M. J. Electrochem. Soc. 2007,154 (10), A910.
-
[10]
(10) Zhang, X.; Sastry, A. M.; Shyy,W. J. Electrochem. Soc. 2008,155 (7), A542.
-
[11]
(11) Yi, Y. B.;Wang, C.W.; Sastry, A. M. J. Eng. Mater. Techonol.2006, 128 (1), 73. doi: 10.1115/1.2130733
-
[12]
(12) Wang, C.W.; Sastry, A. M. J. Electrochem. Soc. 2007, 154 (11),A1035.
-
[13]
(13) Garcia, R. E.; Chiang, Y. M.; Carter,W. C.; Limthongkul, P.;Bishop, C. M. J. Electrochem. Soc. 2005, 152 (1), A255.
-
[14]
(14) Garcia, R. E.; Chiang, Y. M. J. Electrochem. Soc. 2007, 154 (9),A856
-
[15]
(15) Smith, M.; Garcia, R. E.; Horn, Q. C. J. Electrochem. Soc. 2009,156 (11), A896.
-
[16]
(16) Awarke, A.;Wittler, M.; Pischinger, S.; Bockstette, J.J. Electrochem. Soc. 2012, 159 (6), A798.
-
[17]
(17) Liu, M. B.; Liu, G. R. Arch. Comput. Methods Eng. 2010, 17 (1), 25. doi: 10.1007/s11831-010-9040-7
-
[18]
(18) Jiang, F. M.; Sousa, A. C. M. Heat Mass Transfer 2007, 43 (5),479. doi: 10.1007/s00231-006-0131-9
-
[19]
(19) Jiang, F. M.; Oliveira, M. C. A.; Sousa, A. C. M. Comput. Phys. Commun. 2007, 176 (7), 471. doi: 10.1016/j.cpc.2006.12.003
-
[20]
(20) Jiang, F. M.; Sousa, A. C. M. J. Porous Media 2010, 13 (11),951. doi: 10.1615/JPorMedia.v13.i11
-
[21]
(21) Vishwakarma, V.; Das, A. K.; Das, P. K. Appl. Therm. Eng.2011, 31 (14), 2963.
-
[22]
(22) Wang, P.; Shao, J. L.; Qin, C. S. Acta Phys. Sin. 2012, 61 (23),234701. [王裴, 邵建立, 秦承森. 物理学报, 2012, 61 (23),234701.]
-
[23]
(23) Tartakovsky, A. M.; Tartakovsky, D. M.; Scheibe, T. D.; Meakin,P. SIAM J. Sci. Comput. 2008, 30 (6), 2799. doi: 10.1137/070691097
-
[24]
(24) Das, A. K.; Das, P. K. Int. J. Numer. Meth. Fl. 2011, 67 (6),671. doi: 10.1002/fld.v67.6
-
[25]
(25) Jiang, T.; Ouyang, J.; Li, X. J.; Zhang, L.; Ren, J. L. Acta Phys. Sin. 2011, 60 (9), 054701. [蒋涛, 欧阳杰, 栗雪娟, 张林,任金莲. 物理学报, 2011, 60 (9), 054701.]
-
[26]
(26) Ma, L. Q.; Chang, J. Z.; Liu, H. T.; Liu, M. B. Acta Phys. Sin.2012, 61 (5), 054701. [马理强, 常建忠, 刘汉涛, 刘谋斌. 物理学报, 2012, 61 (5), 054701.]
-
[27]
(27) Han, Y.W.; Qiang, H. F.; Zhao, J. L.; Gao,W. R. Acta Phys. Sin.2013, 62 (4), 044702. [韩亚伟, 强洪夫, 赵玖玲, 高巍然. 物理学报, 2013, 62 (4), 044702.]
-
[28]
(28) Wang, G. Q.; Mukherjee, P. P.;Wang, C. Y. Electrochim. Acta2006, 51, 3139. doi: 10.1016/j.electacta.2005.09.002
-
[29]
(29) Wang, G. Q.; Mukherjee, P. P.;Wang, C. Y. Electrochim. Acta2006, 51, 3151. doi: 10.1016/j.electacta.2005.09.003
-
[30]
(30) Nagarajan, G. S.; Zee, J.W. V.; Spotnitz, R. M. J. Electrochem. Soc. 1998, 145 (3), 771. doi: 10.1149/1.1838344
-
[31]
(31) Ramadass, P.; Haran, B.; madam, P. M.; White, R.; Popov, B.N. J. Electrochem. Soc. 2004, 151 (2), A196.
-
[32]
(32) Kuzminskii, Y. V.; Nyrkova, L. I.; Andriiko, A. A. J. Power Sources 1993, 46, 29. doi: 10.1016/0378-7753(93)80032-K
-
[33]
(33) Cleary, P.W.; Monaghan, J. J. J. Comput. Phys. 1999, 148 (1),227. doi: 10.1006/jcph.1998.6118
-
[34]
(34) Monaghan, J. J. Comput. Phys. Rep. 1985, 3 (2), 71. doi: 10.1016/0167-7977(85)90010-3
-
[35]
(35) Verlet, L. Phys. Rev. 1967, 159 (1), 98. doi: 10.1103/PhysRev.159.98
-
[36]
(36) Cleary, P.W. Appl. Math. Model 1998, 22 (12), 981. doi: 10.1016/S0307-904X(98)10031-8
-
[37]
(37) Ryan, E. M.; Tartakovsky, A. M.; Amona, C. Comput. Phys. Commun. 2010, 181 (12), 2008. doi: 10.1016/j.cpc.2010.08.022
-
[38]
(38) Wu,W.; Jiang, F. M. Mater. Charact. 2013, 80, 62. doi: 10.1016/j.matchar.2013.03.011
-
[39]
(39) Wu,W.; Jiang, F. M.; Zeng, J. B. Acta Phys. -Chim. Sin. 2013,29 (11), 2361. [吴伟, 蒋方明, 曾建邦. 物理化学学报, 2013,29 (11), 2361.] doi: 10.3866/PKU.WHXB201309032.
-
[1]
-
-
-
[1]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[2]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[3]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[4]
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
-
[5]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[6]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[7]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[8]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[9]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
-
[10]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[11]
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
-
[12]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[13]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[14]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[15]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[16]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[17]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042
-
[18]
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
-
[19]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[20]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[1]
Metrics
- PDF Downloads(656)
- Abstract views(912)
- HTML views(6)