Citation:
LIU Ying, MENG Xiang-Guang, YU Wei-Feng, LI Xiao-Hong, PENG Xiao. Hydrolysis of Methyl-β-D-cellobioside Catalyzed by Functional Micelles with Glutamic Acid under Mild Conditions[J]. Acta Physico-Chimica Sinica,
;2013, 29(10): 2263-2270.
doi:
10.3866/PKU.WHXB201307292
-
Asurfactant with long alkyl chains and glutamic acid, Nα-dodecyl-L-glutamic acid, was synthesized. Micelles of this surfactant were used to catalyze the hydrolysis of methyl-β-D-cellobioside (MCB), a model substrate of cellulose, under mild conditions. The results indicate that the functional micelle displayed effective catalytic activity for the hydrolysis of MCB to glucose at low temperature (90℃) and an optimal pH of 5.0. The first-order reaction rate constant (km) of MCB hydrolysis catalyzed by the synthesized micelles was calculated based on the phase separation model of micellar catalysis. The hydrolysis of MCB catalyzed by the cooperative systems of micelles with glutamic acid (Glu) or histidine (His) was also investigated. The addition of amino acids promoted the hydrolysis of MCB, and the maximumcatalytic efficiency was reached at a molar concentration ratio of micelles to amino acids of 1:1. Temperature considerably influenced the reaction rate and product of MCB hydrolysis. The yield of glucose from MCB hydrolysis catalyzed by the cooperative system of micelles with Glu reached more than 36.6%after 1.5 h at 130℃. The kinetics of this reaction was studied; the apparent first-order rate constants (kobsd) were obtained and the activation energy (Ea) calculated for the formation of glucose was 97.18 kJ·mol-1.
-
-
-
[1]
(1) Dhepe, P. L.; Fukuoka, A. ChemSusChem 2008, 1 (12), 969.doi: 10.1002/cssc.v1:12
-
[2]
(2) Bozell, J. J.; Petersen, G. R. Green Chem. 2010, 12 (4), 539.doi: 10.1039/b922014c
-
[3]
(3) Igarashi, K.; Uchihashi, T.; Koivula, A.; Wada, M.; Kimura, S.;Okamoto, T.; Penttilä, M.; Ando, T.; Samejima, M. Science2011, 333 (6047), 1279. doi: 10.1126/science.1208386
-
[4]
(4) Lynd, L. R.; Laser, M. S.; Bransby, D.; Dale, B. E.; Davison, B.;Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J. D.;Sheehan, J.;Wyman, C. E. Nat. Biotechnol. 2008, 26 (2), 169.doi: 10.1038/nbt0208-169
-
[5]
(5) Wolfenden, R.; Yuan, Y. J. Am. Chem. Soc. 2008, 130 (24),7548. doi: 10.1021/ja802206s
-
[6]
(6) Komanoya, T.; Kobayashi, H.; Hara, K.; Chun, W. J.; Fukuoka,A. Appl. Catal. A-Gen. 2011, 407 (1-2), 188.
-
[7]
(7) Harmer, M. A.; Fan, A.; Liauw, A.; Kumar, R. K. Chem. Commun. 2009, No. 43, 6610.
-
[8]
(8) Nie, H. R.; Liu, M. Z.; Chen, Z. B. Acta Phys. -Chim. Sin. 2004,20 (4), 386. [聂华荣,柳明珠,陈振斌.物理化学学报, 2004,20 (4), 386.] doi: 10.3866/PKU.WHXB20040411
-
[9]
(9) Wilson, D. B. Curr. Opin. Biotech. 2009, 20 (3), 295. doi: 10.1016/j.copbio.2009.05.007
-
[10]
(10) Rinaldi, R.; Palkovits, R.; Schuth, F. Angew. Chem. Int. Edit.2008, 47 (42), 8047. doi: 10.1002/anie.v47:42
-
[11]
(11) Kitano, M.; Yamaguchi, D.; Suganuma, S.; Nakajima, K.; Kato,H.; Hayashi, S.; Hara, M. Langmuir 2009, 25 (9), 5068. doi: 10.1021/la8040506
-
[12]
(12) Wang, H. Y.; Zhang, C. B.; He, H.; Wang, L. Acta Phys. -Chim. Sin. 2010, 26 (7), 1873. [王华瑜, 张长斌,贺泓,王莲.物理化学学报, 2010, 26 (7), 1873.] doi: 10.3866/PKU.WHXB20100721
-
[13]
(13) Long, J. X.; Guo, B.; Li, X. H.; Wang, F. R.; Wang, L. F. Acta Phys. -Chim. Sin. 2011, 27 (5), 995. [龙金星,郭斌,李雪辉,王芙蓉, 王乐夫.物理化学学报, 2011, 27 (5), 995.] doi: 10.3866/PKU.WHXB20110506
-
[14]
(14) Singhania, R. R.; Patel, A. K.; Sukumaran, R. K.; Larroche, C.;Pandey, A. Bioresource Technol. 2013, 127, 500. doi: 10.1016/j.biortech.2012.09.012
-
[15]
(15) Koshland, D. E. J.; Stein, S. S. J. Biol. Chem. 1954, 208 (1), 139.
-
[16]
(16) Wang, J. H.; Hou, Q. Q.; Dong, L. H.; Liu, Y. J.; Liu, C. B.J. Mol. Graph. Model. 2011, 30, 148. doi: 10.1016/j.jmgm.2011.06.012
-
[17]
(17) Verma, M. L.; Chaudhary, R.; Tsuzuki, T.; Barrow, C. J.; Puri,M. Bioresource Technol. 2013, 135, 2. doi: 10.1016/j.biortech.2013.01.047
-
[18]
(18) Figueira, J. A.; Sato, H. H.; Fernandes, P. J. Agric. Food Chem.2013, 61 (3), 626. doi: 10.1021/jf304594s
-
[19]
(19) Muñoz-Gutiérrez, I.; Oropeza, R.; sset, G.; Martinez, A.J. Ind. Microbiol. Biot. 2012, 39 (8), 1141.
-
[20]
(20) Liu, L. F.; Zeng, Z. T.; Zeng, G. M.; Chen, M.; Zhang, Y.;Zhang, J. C.; Fang, X.; Jiang, M.; Lu, L. H. Bioorg. Med. Chem. Lett. 2012, 22 (2), 837. doi: 10.1016/j.bmcl.2011.12.053
-
[21]
(21) Jiang, F. B.; Jiang, B. Y.; Cao, Y. S.; Meng, X. G.; Yu, X. Q.;Zeng, X. C. Colloids Surf. A 2005, 254 (1-3), 91.
-
[22]
(22) Bhattacharya, S.; Kumari, N. Coord. Chem. Rev. 2009, 253 (17-18), 2133. doi: 10.1016/j.ccr.2009.01.016
-
[23]
(23) Desbouis, D.; Troitsky, I. P.; Belousoff, M. J.; Spiccia, L.;Graham, B. Coord. Chem. Rev. 2012, 256 (11-12), 897.
-
[24]
(24) Boudou, M.; Ogawa, C.; Kobayashi, S. Adv. Synth. Catal. 2006,348 (18), 2585.
-
[25]
(25) Ye, Y.; Ding, Q. P.;Wu, J. Tetrahedron 2008, 64 (7), 1378. doi: 10.1016/j.tet.2007.11.055
-
[26]
(26) Mo, Z. L.; Sun, Y. X.; Chen, H.; Wang, K. J.; Liu, Y. Z.; Li, H. J.Acta Chim. Sin. 2005, 63 (14), 1365. [莫尊理, 孙银霞,陈红, 王坤杰, 刘艳芝, 李贺军. 化学学报, 2005, 63 (14),1365.]
-
[27]
(27) Sasidharan, M.; Gunawardhana, N.; Luitel, H. N.; Yokoi, T.;Inoue, M.; Yusa, S.; Watari, T.; Yoshio, M.; Tatsumi, T.;Nakashima, K. J. Colloid Interface Sci. 2012, 370 (1), 51. doi: 10.1016/j.jcis.2011.12.050
-
[28]
(28) Jiang, F. B.; Huang, L. Y.; Meng, X. G.; Du, J.; Yu, X. Q.; Zhao,Y. F.; Zeng, X. C. J. Colloid Interface Sci. 2006, 303 (1),236. doi: 10.1016/j.jcis.2006.07.050
-
[29]
(29) Kou, D.; Meng, X. G.; Liu, Y.; Du, J.; Kou, X. M.; Zeng, X. C.Colloids Surf. A 2008, 324 (1-3), 189.
-
[30]
(30) Li, J. H.; Du, L. K.; Wang, L. S. J. Phys. Chem. B 2010, 114 (46), 15261. doi: 10.1021/jp1064177
-
[31]
(31) Barr, B. K.; Wolfgang, D. E.; Piens, K.; Claeyssens, M.; Wilson,D. B. Biochemistry 1998, 37 (26), 9220. doi: 10.1021/bi980063i
-
[32]
(32) Zechel, D. L.; Withers, S. G. Accounts Chem. Res. 2000, 33 (1),11. doi: 10.1021/ar970172
-
[33]
(33) Meiland, M.; Heinze, T.; Guenther, W.; Liebert, T. Carbohyd. Res. 2010, 345 (2), 257. doi: 10.1016/j.carres.2009.11.007
-
[34]
(34) Cheng, M. X.; Shi, T.; Guan, H. Y.; Wang, S. T.; Wang, X. H.;Jiang, Z. J. Appl. Catal. B: Environ. 2011, 107 (1-2), 104.
-
[35]
(35) Zhang, Y.; Xu, J. L.; Qi, W.; Yuan, Z. H.; Zhuang, X. S.; Liu, Y.;He, M. C. Appl. Biochem. Biotechnol. 2012, 168 (1), 144. doi: 10.1007/s12010-011-9362-4
-
[36]
(36) Saqib, A. A. N.; Whitney, P. J. Biomass Bioenerg. 2011, 35 (11),4748. doi: 10.1016/j.biombioe.2011.09.013
-
[37]
(37) Ruiz, M. D. C. R.; Querner, J.; Adorjan, I.; Kosma, P.; Rosenau,T. Macromol. Symp. 2005, 232 (1), 68.
-
[38]
(38) Petersen, S. H.; Vanzyl, W. H.; Pretorius, I. S. Biotechnol. Tech.1998, 12 (8), 615. doi: 10.1023/A:1008829129516
-
[39]
(39) Violot, S.; Aghajari, N.; Czjzek, M.; Feller, G.; Sonan, G. K.; uet, P.; Gerday, C.; Haser, R.; Receveur-Bréchot, V. J. Mol. Biol. 2005, 348 (5), 1211. doi: 10.1016/j.jmb.2005.03.026
-
[40]
(40) Liu, J. L.; Wang, X. M.; Xu. D. G. J. Phys. Chem. B 2010, 114 (3), 1462. doi: 10.1021/jp909177e
-
[41]
(41) Meng, X. G.; Guo, Y.; Hu, C. W.; Zeng, X. C. J. Inorg. Biochem. 2004, 98 (12), 2107. doi: 10.1016/j.jinorgbio.2004.09.019
-
[42]
(42) Dwars, T.; Paetzold, E.; Oehme, G. Angew. Chem. Int. Edit.2005, 44 (44), 7174.
-
[43]
(43) Menger, F. M.; Portnoy, C. E. J. Am. Chem. Soc. 1967, 89 (18),4698. doi: 10.1021/ja00994a023
-
[44]
(44) Zeng, X. C.; Meng, X. G.; Wang, Q.; Zhang, Y. Q.; Qin, Z. M.J. Disper. Sci. Technol. 1997, 18 (4), 369. doi: 10.1080/01932699708943741
-
[45]
(45) Zeng, X. C.; Wang, Q.; Meng, X. G.; Zhang, Y. Q.; Qin, Z. M.J. Disper. Sci. Technol. 1998, 19 (5), 591. doi: 10.1080/01932699808913201
-
[46]
(46) Knowles, J. K. C.; Lentovaara, P.; Murray, M.; Sinnott, M. L.J. Chem. Soc., Chem. Commun. 1988, No. 21, 1401. doi: 10.1039/C39880001401
-
[47]
(47) Claeyssens, M.; Tomme, P.; Brewer, C. F.; Hehre, E. J. FEBS Lett. 1990, 263 (1), 89.
-
[48]
(48) Barr, B. K.; Wolfgang, D. E.; Piens, K.; Claeyssens, M.; Wilson,D. B. Biochemistry 1998, 37 (26), 9220. doi: 10.1021/bi980063i
-
[49]
(49) Zechel, D. L.; Withers, S. G. Accounts Chem. Res. 2000, 33 (1),11. doi: 10.1021/ar970172+
-
[50]
(50) Matson, T. D.; Barta, K.; Iretskii, A. V.; Ford, P. C. J. Am. Chem. Soc. 2011, 133 (35), 14090. doi: 10.1021/ja205436c
-
[51]
(51) Potvin, J.; Sorlien, E.; Hegner, J.; DeBoef, B.; Lucht, B. L.Tetrahedron Lett. 2011, 52 (44), 5891.
-
[52]
(52) Liang, X.; Montoya, A.; Haynes, B. S. J. Phys. Chem. B 2011,115 (36), 10682. doi: 10.1021/jp204199h
-
[53]
(53) Sasaki, M.; Adschiri, T.; Arai, K. AIChE J. 2004, 50 (1), 192.
-
[1]
-
-
-
[1]
Fanpeng Shang , Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034
-
[2]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[3]
Yan'e LIU , Shengli JIA , Yifan JIANG , Qinghua ZHAO , Yi LI , Xinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054
-
[4]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[5]
Feiyang Liu , Liuhong Song , Miaoyu Fu , Zhi Zheng , Gang Xie , Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037
-
[6]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[7]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[8]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[9]
Meiyu Lin , Yuxin Fang , Songzhang Shen , Yaqian Duan , Wenyi Liang , Chi Zhang , Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042
-
[10]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[11]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[12]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[13]
Xiaoyang Li , Xiaowei Huang , Yimeng Zhang , Huan Liu , Shao Jin , Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035
-
[14]
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
-
[15]
Xiaojing Tian , Zhichun Huang , Qingsong Zhang , Xu Wang , Ning Yang , Nanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037
-
[16]
Yukun Xing , Xiaoyu Xie , Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006
-
[17]
Aiyi Xin , Jiawei Li , Xinyang Ran , Chuanjiang Fu , Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031
-
[18]
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066
-
[19]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[20]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[1]
Metrics
- PDF Downloads(623)
- Abstract views(872)
- HTML views(10)