Citation: PENG Min-Jun, LU Gui-Bin, CHEN Wang-Hua, CHEN Li-Ping, LÜ Jia-Yu. Thermal Decomposition Characteristic and Kinetics of AIBN in Aniline Solvent[J]. Acta Physico-Chimica Sinica, ;2013, 29(10): 2095-2100. doi: 10.3866/PKU.WHXB201307122 shu

Thermal Decomposition Characteristic and Kinetics of AIBN in Aniline Solvent

  • Received Date: 3 June 2013
    Available Online: 12 July 2013

    Fund Project: 国家自然科学基金(51204099)资助项目 (51204099)

  • 2,2-Azobisisobutyronitrile (AIBN) is a typical material that shows overlap between endothermic phase change and exothermic decomposition. This phenomenon went against the kinetics of AIBN. To properly analyze the effect of endothermic phase change on the exothermic decomposition process and determine the non-isothermal behavior of AIBN in a solvent, a solution of AIBN (22.18% mass fraction) in aniline was tested under dynamic conditions by differential scanning calorimeter (DSC). Depending on heating rates, the onset temperature range of AIBN in aniline was from 79.90 to 94.47 ℃, and the decomposition enthalpy was 291 J·g-1 greater than that in its pure state, which could be regarded as phase change enthalpy. Based on the Kissinger method, the differences of the activation energy E and the frequency factor A of AIBN and its solution were quite small. The thermal decomposition processes of AIBN and its solution were analyzed by the Friedman method, which showed that the reaction progress range was less than 0.20, in which the endothermic phase change of solid AIBN would disturb its exothermic decomposition. When α was greater than 0.20, the dependence of E(α) and ln(A(α)·f(α)) on α were roughly the same. These results show that aniline is an inertial solvent; that is, decomposition of AIBN is not disturbed by aniline. This means that the decomposition mechanism of AIBN in aniline could be regarded as the same as that in its solid state. The decomposition kinetics of AIBN could be described according to the Mampel power law, G(α)=α3/2, which is based on the Friedman and Coats-Redfern integral methods, and the average apparent activation energy was 139.93 kJ·mol-1.

  • 加载中
    1. [1]

      (1) Engel, P. S. Chem. Rev. 1980, 80, 99. doi: 10.1021/cr60324a001

    2. [2]

      (2) Buback, M.; Huckestein, B.; Kuchta, F. D.; Russell, G. T.;Schmid, E. Macromol. Chem. Phys. 1994, 195, 2117. doi: 10.1002/macp.1994.021950620

    3. [3]

      (3) Li, H. Fire Technique and Products Information 2010, No. 5,12. [厉华.消防技术与产品信息, 2010, No. 5, 12.]

    4. [4]

      (4) Sun, C. K.; Zhao, H. M.; Li, Z. H. Sci. China B: Chem. 2004, 34 (3), 188. [孙成科, 赵红梅, 李宗和. 中国科学B辑: 化学,2004, 34 (3), 188.]

    5. [5]

      (5) Sun, C. K.; Lin, X. F.; Yang, S. Y. Journal of Qujing Normal University 2005, 24 (6), 1. [孙成科, 林雪飞,杨思娅. 曲靖师范学院学报, 2005, 24 (6), 1.]

    6. [6]

      (6) Sun, C. K.; Zhao, H. M.; Fang, D. C.; Li, Z. H. J. Mol. Struct. -Theochem 2004, 679, 89.

    7. [7]

      (7) Whitmore, M. W.; Wilberforce, J. K. J. Loss. Prev. Process Ind.1993, 6 (2), 95. doi: 10.1016/0950-4230(93)90006-J

    8. [8]

      (8) Yu, Y. H.; Hasegawa, K. J. Hazard. Mater. 1996, No. 45, 193.

    9. [9]

      (9) Kotoyori, T. J. Hazard. Mater. 1996, No. 4, 1.

    10. [10]

      (10) Li, X. R.; Koseki, H. Thermochim. Acta 2004, 423, 77. doi: 10.1016/j.tca.2004.04.020

    11. [11]

      (11) Chen, Z. Y.; Lin, H. M.; Wang, L. Journal of Zhejiang Institute of Science and Technology 2000, 17 (4), 225. [陈志彦,林鹤鸣,汪澜.浙江工程学院学报, 2000, 17 (4), 225.]

    12. [12]

      (12) Provder, T.; Holsworth, R. M.; Grentzer, T. H.; Kline, S. A. Adv. Chem. Ser. 1983, 203 (13), 233.

    13. [13]

      (13) Neag, C. M.; Provder, T.; Holsworth, R. M. J. Therm. Anal.1987, 32, 1833.

    14. [14]

      (14) Wan, W.; Chen, W. H.; Wei, S. A.; Shen, Z. C.; Zhang, C. X.Chin. Saf. Sci. J. 2012, 22 (8), 131. [万伟,陈网桦, 卫水爱,沈紫晨, 张彩星.中国安全科学学报, 2012, 22 (8), 131.]

    15. [15]

      (15) Guo, S.; Wan, W.; Chen, C.; Chen, W. H. J. Therm. Anal. Calorim. 2013, 3 (113), 1169.

    16. [16]

      (16) Bessiere, J. M.; Boutevin, B.; Loubet, O. Polym. Int. 1993, 30 (5), 545.

    17. [17]

      (17) Khattab, M. A.; Elgamal, M. A. Fire Mater. 1996, 20, 253.

    18. [18]

      (18) Li, X. R.; Wang, X. L.; Koseki, H. J. Hazard. Mater. 2008, 159 (1), 13. doi: 10.1016/j.jhazmat.2008.01.062

    19. [19]

      (19) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.;Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press:Beijing, 2008; pp 151-155. [胡荣祖, 高胜利,赵凤起, 史启祯, 张同来,张建军. 热分析动力学(第二版).北京:科学出版社, 2008: 151-155.]

    20. [20]

      (20) Advanced Kinetics and Technology Solutions. http://www.akts.com (accessed Feb 27, 2013).

    21. [21]

      (21) Coats, A. W.; Redfern, J. P. Nature 1964, 201 (4924), 68.


  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    7. [7]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    8. [8]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    11. [11]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    18. [18]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

Metrics
  • PDF Downloads(765)
  • Abstract views(2026)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return