Citation:
LI Jia, XU Wen-Li, HU Jing, LING Min, YAO Jian-Hua. Hydrolysis Reaction Mechanismof 2, 4-Dichlorophenoxy Acetic Acid Metabolism[J]. Acta Physico-Chimica Sinica,
;2013, 29(09): 1923-1930.
doi:
10.3866/PKU.WHXB201306281
-
2,4-Dichlorophenoxy acetic acid (2,4-D) is a herbicide and plant growth regulator that is widely applied inagriculture.Many chemical reactions takeplace inthemetabolismof 2,4-D. Herein, the hydrolysis reaction mechanismin 2,4-D metabolismwill be presented. In this study, a density functional theory approach, B3LYP, was employed toinvestigatethehydrolysis reaction mechanismalong three different paths. The computed results indicate that: (Ⅰ) there are two models of the hydrolysis reaction of 2,4-D. The dissociation mechanismof C(1)―O and C―Cl involve hydrogen transfer and Cl substitution, respectively. (Ⅱ) The energy barrier of C―Cl dissociation was lower and the dissociation showed advantageous dynamics. Two of the reaction paths that initiate the dissociation of C―Cl were primary reactions. The dissociation of C(1)―O was the last step in the primary reactions and had a higher energy barrier. In metabolism, the different intermediates have different concentrations, and this impacts on the reaction rate. (Ⅲ) In addition, it was necessary to consider the solvent effect to investigate the hydrolysis reaction. To characterize the solvent effect, the conductor-like polarizable continuum model (CPCM) was used to simulate the hydrolysis reaction with respect to the bond length and energy barrier.
-
-
-
[1]
(1) Zeljezic, D.; Garaj-Vrhovac, V. Toxicology 2004, 200 (1), 39.doi: 10.1016/j.tox.2004.03.002
-
[2]
(2) Lerch, T. Z.; Dignac, M. F.; Barriuso, E.; Bardoux, G.; Mariotti,A. J. Microbiol. Meth. 2007, 71, 162. doi: 10.1016/j.mimet.2007.08.003
-
[3]
(3) e-Pesticide Manual V4.2, version 4.2, copyright BCPC, 2008-2009, Publisher BCPC.
-
[4]
(4) Colborn, E.; VomSaal, F. S.; Soto, A. M. Environmental Impact Assessment Review 1993, 14, 469.
-
[5]
(5) Zeep, R. G.; Wolfe, N. L.; rdon, J. A.; Baughman, G. L.Environ. Sci. Technol. 1975, 9, 1144. doi: 10.1021/es60111a001
-
[6]
(6) Hoover, D. G.; Bor nov, G. E.; Jones, S. H. Appl. Environ. Microb. 1986, 51, 226.
-
[7]
(7) Luna, A. J.; Chiavone-Filho, O.; Machulek, A.; de Moraes, J. E.F.; Nascimento, C. A. O. J. Environ. Manage. 2012, 111, 10.doi: 10.1016/j.jenvman.2012.06.014
-
[8]
(8) Cabrera, M. I.; Martin, C. A.; Alfano, O. M. Water Sci. Technol.1997, 35 (4), 31.
-
[9]
(9) Lee, Y.; Lee, C.; Yoon, J. Chemosphere 2003, 51, 963. doi: 10.1016/S0045-6535(03)00043-2
-
[10]
(10) Wang, Q.; Lemley, A. T. Environ. Sci. Technol. 2001, 35, 4509.doi: 10.1021/es0109693
-
[11]
(11) Rivera-Utrilla, J.; Sánchez-Polo, M.; Abdel daiem, M. M.;Ocampo-Pérez, R. Appl. Catal. B-Environ. 2012, 126, 100. doi: 10.1016/j.apcatb.2012.07.015
-
[12]
(12) Seck, E. I.; Dona-Rodríguez, J. M.; Fernández-Rodriguez, C.; nzález-Díaz, O. M.; Arana, J.; Pérez-Pena, J. Appl. Catal. BEnviron.2012, 125, 28. doi: 10.1016/j.apcatb.2012.05.028
-
[13]
(13) Laurent, F.; Debrauwer, L.; Rathahao, E.; Scalla, R. J. Agric. Food Chem. 2000, 48 (11), 5307. doi: 10.1021/jf990672c
-
[14]
(14) Niedrée, B.; Vereecken, H.; Burauel, P. J. Environ. Radioactiv.2013, 115, 168. doi: 10.1016/j.jenvrad.2012.08.008
-
[15]
(15) Fontmorin, J. M.; Huguet, S.; Fourcade, F.; Geneste, F.; Floner,D.; Amrane, A. Chem. Eng. J. 2012, 195, 208.
-
[16]
(16) Tiedje, J. M.; Duxbury, J. M.; Alexander, M.; Dawson, J. E.J. Agric. Food Chem. 1969, 17 (5), 1021. doi: 10.1021/jf60165a037
-
[17]
(17) Hagin, R. D.; Linscott, D. L.; Dawson, J. E. J. Agric. Food Chem. 1970, 18 (5), 848. doi: 10.1021/jf60171a030
-
[18]
(18) Hamilton, R. H.; Hurter, J.; Hall, J. K.; Erce vich, C. D.J. Agric. Food Chem. 1971, 19 (3), 480. doi: 10.1021/jf60175a031
-
[19]
(19) Crosby, D. G.; Tutass, H. O. J. Agric. Food Chem. 1966, 14 (6),596. doi: 10.1021/jf60148a012
-
[20]
(20) Linscott, D. L.; Hagin, R. D.; Dawson, J. E. J. Agric. Food Chem. 1968, 16 (5), 844. doi: 10.1021/jf60159a035
-
[21]
(21) Feung, C. S.; Hamilton, R. H.; Mumma, R. O. J. Agric. Food Chem. 1973, 21 (4), 637. doi: 10.1021/jf60188a058
-
[22]
(22) Roberts, T. R. Metabolic Pathways of Agrochemicals; TheRoyal Society of Chemistry: Cambridge, UK, 1998; pp 66-74.
-
[23]
(23) Barone, V.; Cossi, M. J. Phys. Chem. 1998, 102 (11), 1995. doi: 10.1021/jp9716997
-
[24]
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.: Pittsburgh, PA, 2009.
-
[25]
(25) Perdew, J. P. Phys. Rev. B 1986, 33, 8800. doi: 10.1103/PhysRevB.33.8800
-
[26]
(26) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[27]
(27) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,54, 724. doi: 10.1063/1.1674902
-
[28]
(28) Deng, L.; Ziegler, T.; Fan, L. J. J. Chem. Phys. 1993, 99, 3823.doi: 10.1063/1.466129
-
[29]
(29) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,899. doi: 10.1021/cr00088a005
-
[30]
(30) Jia, X. J.; Pan, X. M.; Wang, L. W.; Liu, Y.; Sun, H.; Su, Z. M.;Wang, R. S. Chem. J. Chin. Univ. 2008, 29, 1224. [贾秀娟,潘秀梅, 王莉伟,刘颖,孙昊,苏忠民, 王荣顺.高等学校化学学报, 2008, 29, 1124.]
-
[31]
(31) Yi, G. Q.; Zeng, Y.; Xia, X. F. Chem. Phys. 2008, 345 (1), 73.doi: 10.1016/j.chemphys.2008.01.036
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[5]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[6]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[7]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[8]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[9]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[10]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[11]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[12]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[13]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[14]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[15]
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
-
[16]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[17]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[18]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[19]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[20]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[1]
Metrics
- PDF Downloads(789)
- Abstract views(1623)
- HTML views(14)