Citation:
WEI Yu-Long, BAO Chun-Xiong, GAO Hao, HUANG Huan, YU Tao, ZOU Zhi-Gang. Increasing Specific Surface Area of (110)-Oriented ZnO Nanosheets by Sulfuration-Oxidization Treatment for Photoelectrode Applications[J]. Acta Physico-Chimica Sinica,
;2013, 29(09): 1975-1980.
doi:
10.3866/PKU.WHXB201306212
-
To increase the specific surface area of ZnOnanosheets, a sulfuration and oxidization treatment was introduced. First, ZnO nanosheets were grown by the hydrothermal method at a low temperature on the conductive side of the fluorine-doped tin oxide (FTO) conductive glass. The same method was then used to obtain ZnS nanosheets by dipping the FTO with ZnO nanosheets into the precursor of the thioacetamide aqueous solution. In the end, ZnO nanosheets were gained again by sintering ZnS nanosheets at a high temperature in an air atmosphere. The effects of the treatment on ZnO nanosheets were studied with respect to morphology, structure, specific surface area, and pore size distributions. The results showed that the specific surface area of ZnO nanosheets can be doubled after the sulfuration and oxidization treatment. The samples were also introduced into the photoelectrode of dye-sensitized solar cells (DSSCs) and their dye-loading, current density-voltage (J-V), and the monochromatic incident photon-to-electron conversion efficiency (IPCE) were characterized and compared. The results showed that both the dye-loading and IPCE were increased via the sulfuration and oxidization treatment. Above all, the energy conversion efficiency of DSSCs was found to increase by 33%.
-
-
-
[1]
(1) O'Regan, B. C.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Grätzel, M. J. Photochem. Photobiol. A-Chem. 2004, 164,3. doi: 10.1016/j.jphotochem.2004.02.023
-
[3]
(3) Edward, J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Webber, J. A.A.; Snaith, H. J. Nature 2013, 495, 215. doi: 10.1038/nature11936
-
[4]
(4) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.;Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S.M.; Grätzel, M. Science 2011, 334, 629. doi: 10.1126/science.1209688
-
[5]
(5) Chen, J.; Li, C.; Xu, F.; Zhou, Y. D.; Lei, W.; Sun, L. T.; Zhang,Y. RSC Adv. 2012, 2, 7384. doi: 10.1039/c2ra20909h
-
[6]
(6) Bjoerksten, U.; Moser, J.; Grätzel, M. Chem. Mater. 1994, 6,858. doi: 10.1021/cm00042a026
-
[7]
(7) Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. J. Am. Chem. Soc. 2001, 123, 10639. doi: 10.1021/ja011315x
-
[8]
(8) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Baker, R. H.; Mueller,E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc.1993, 115, 6382. doi: 10.1021/ja00067a063
-
[9]
(9) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S.M.; Baker, R. H.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.;Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.;Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
-
[10]
(10) An, H. L.; Xue, B. F.; Li, D. M.; Li, H.; Meng, Q. B.; Guo, L.;Chen, L. Q. Electrochem. Commun. 2006, 8, 170. doi: 10.1016/j.elecom.2005.11.012
-
[11]
(11) Wu, J. H.; Li, P. J.; Hao, S. C.; Yang, H. X.; Lan, Z. Electrochim. Acta 2007, 52, 5334. doi: 10.1016/j.electacta.2006.12.067
-
[12]
(12) Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S. Sol. Energy Mater. Sol. Cells 2008, 92, 814. doi: 10.1016/j.solmat.2007.12.012
-
[13]
(13) Chu, L. L.; Gao, Y. R.; Wu, M. X.; Wang, L. L.; Ma, T. L. Acta Phys. -Chim. Sin. 2012, 28, 1739. [储玲玲,高玉荣, 武明星,王琳琳, 马廷丽. 物理化学学报, 2012, 28, 1739.] doi: 10.3866/PKU.WHXB201204232
-
[14]
(14) Li, J.; Sun, M. X.; Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2011, 27, 2255. [李靖,孙明轩,张晓艳,崔晓莉. 物理化学学报, 2011, 27, 2255.] doi: 10.3866/PKU.WHXB20110901
-
[15]
(15) Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater. 2009, 21, 4087. doi: 10.1002/adma.v21:41
-
[16]
(16) Guan, J.; Wang, X. Y.; Tian, Z. P.; Zhang, J. Y.; Yu, T.; Yu, Z. T.;Zou, Z. G. Chin. J. Inorg. Chem. 2009, 25, 2036. [管杰, 王湘艳, 田志鹏,张继远,于涛,于振涛,邹志刚.无机化学学报, 2009, 25, 2036.]
-
[17]
(17) Qurashi, A.; Hossain, M. F.; Faiz, M.; Tabet, N.; Alam, M. W.;Reddy, N. K. J. Alloy. Compd. 2010, 503, L40.
-
[18]
(18) Huang, Q. L.; Fang, L.; Chen, X.; Saleem, M. J. Alloy. Compd.2011, 509, 9456. doi: 10.1016/j.jallcom.2011.07.029
-
[19]
(19) Wu, J. J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Appl. Phys. Lett. 2007, 90, 213109. doi: 10.1063/1.2742639
-
[20]
(20) Wang, X. D.; Zhou, J.; Lao, C. S.; Song, J. H.; Xu, N. S.; Wang,Z. L. Adv. Mater. 2007, 19, 1627.
-
[21]
(21) Kao, M. C.; Chen, H. Z.; Young, S. L.; Lin, C. C.; Kung, C. Y.Nanoscale Res. Lett. 2012, 7, 260. doi: 10.1186/1556-276X-7-260
-
[22]
(22) Xi, Y.; Wu, W. Z.; Fang, H.; Hu, C. G. J. Alloy. Compd. 2012,529, 163. doi: 10.1016/j.jallcom.2012.02.183
-
[23]
(23) Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.;Wang, Z. L. Nanotechnology 2010, 21, 405203. doi: 10.1088/0957-4484/21/40/405203
-
[24]
(24) Ranjusha, R.; Lekha, P.; Subramanian, K. R. V.; Shantikumar, V.N.; Balakrishnan, A. J. Mater. Sci. Technol. 2011, 27, 961. doi: 10.1016/S1005-0302(11)60170-9
-
[25]
(25) Wang, X. Y.; Tian, Z. P.; Yu, T.; Tian, H. M.; Zhang, J. Y.; Yuan,S. K.; Zhang, X. B.; Li, Z. S.; Zou, Z. G. Nanotechnology 2010,21, 065703. doi: 10.1088/0957-4484/21/6/065703
-
[26]
(26) Lin, C. Y.; Lai, Y. H.; Chen, H. W.; Chen, J. G.; Kung, C. W.;Vittal, R.; Ho, K. U. Energy Environ. Sci. 2011, 4, 3448. doi: 10.1039/c0ee00587h
-
[27]
(27) Qiu, J. H.; Guo, M.; Wang, X. D. ACS Appl. Mater. Interfaces2011, 3, 2358. doi: 10.1021/am2002789
-
[28]
(28) McCune, M.; Zhang, W.; Deng, Y. L. Nano Lett. 2012, 12,3656. doi: 10.1021/nl301407b
-
[29]
(29) Qiu, J. H.; Guo, M.; Feng, Y. J.; Wang, X. D. Electrochim. Acta2011, 56, 5776. doi: 10.1016/j.electacta.2011.04.059
-
[30]
(30) Jiang, C. Y.; Sun, X. W.; Lo, G. Q.; Kwong, D. L.; Wang, J. X.Appl. Phys. Lett. 2007, 90, 263501.
-
[31]
(31) Ju, X. H.; Feng, W.; Varutt, K. C.; Hori, T. S.; Fujii, A. H.;Ozaki, M. N. Nanotechnology 2008, 19, 435706. doi: 10.1088/0957-4484/19/43/435706
-
[32]
(32) Fujimura, N.; Nishihara, T.; to, S.; Xu, J. F.; Ito, T. J. Cryst. Growth 1993, 130, 269. doi: 10.1016/0022-0248(93)90861-P
-
[33]
(33) Zhang, X. T.; Liu, Y. C.; Zhi, Z. Z.; Zhang, J. Y.; Lu, Y. M.; Xu,W.; Shen, D. Z.; Zhong, G. Z.; Fan, X. W.; Kong, X. G. J. Cryst. Growth 2002, 240, 463. doi: 10.1016/S0022-0248(02)00924-7
-
[34]
(34) Groen, J. C.; Peffer, L. A. A.; Ramirez, J. P. Microporous Mesoporous Mat. 2003, 60, 1. doi: 10.1016/S1387-1811(03)00339-1
-
[35]
(35) Dawood, F.; Schaak, R. E. J. Am. Chem. Soc. 2009, 131,424. doi: 10.1021/ja808455u
-
[36]
(36) Wang, S. M.; Xia, G. D.; Shao, J. D.; Fan, Z. X. J. Alloy. Compd. 2006, 424, 304. doi: 10.1016/j.jallcom.2005.12.022
-
[37]
(37) Jiu, J.; Isoda, S.; Wang, F. M.; Adachi, M. J. Phys. Chem. B2006, 110, 2089. doi: 10.1021/jp054038f
-
[38]
(38) Hwang, K. J.; Shim, W. G.; Jung, S. H.; Yoo, S. J.; Lee, J. W.Appl. Surf. Sci. 2010, 256, 5428. doi: 10.1016/j.apsusc.2009.12.128
-
[1]
-
-
-
[1]
Xia Shu , Longtian Sima , Jiali Wang , Jiacheng Chu , Xieyidai·Yusunjiang , Mubareke·Maimaitijiang , Yingwei Lu , Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013
-
[2]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[3]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[4]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[5]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
-
[6]
Yang Li , Jiachen Li , Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016
-
[7]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[8]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029
-
[9]
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
-
[10]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042
-
[11]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[12]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[13]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[14]
Jianqiao ZHANG , Yang LIU , Yan HE , Yaling ZHOU , Fan YANG , Shihui CHENG , Bin XIA , Zhong WANG , Shijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444
-
[15]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046
-
[16]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[17]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[18]
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
-
[19]
Yongqing Kuang , Jie Liu , Jianjun Feng , Wen Yang , Shuanglian Cai , Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012
-
[20]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[1]
Metrics
- PDF Downloads(668)
- Abstract views(825)
- HTML views(10)