Citation: ZHANG Shuan-Qin, KONG Ling-Dong, ZHAO Xi, Roel JANSEN, CHEN Jian-Min. Effects of Ammonia and Amines on Heterogeneous Oxidation of Carbonyl Sulfide on Hematite[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 2027-2034. doi: 10.3866/PKU.WHXB201306171 shu

Effects of Ammonia and Amines on Heterogeneous Oxidation of Carbonyl Sulfide on Hematite

  • Received Date: 22 March 2013
    Available Online: 17 June 2013

    Fund Project: 国家自然科学基金(21077025, 21277028, 21190053) (21077025, 21277028, 21190053)上海市科学技术委员会项目(10231203801, 10JC1401600)资助 (10231203801, 10JC1401600)

  • The heterogeneous oxidation of carbonyl sulfide (COS) on hematite pre-adsorbed with ammonia and methylamine, trimethylamine, triethylamine, phenylamine, pyridine, and pyrrole was investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy (DRIFTS) at room temperature. The products and kinetics of the heterogeneous reaction were investigated. The results showed that adsorbed COS could be oxidized on the surface of hematite pre-adsorbed with these basic substances, forming gaseous carbon dioxide (CO2), surface bicarbonate (HCO3-), surface carbonate (CO32-), and surface SO42-. Ammonia and amines pre-adsorbed on hematite significantly enhanced the reactivity of COS. Hematite with pre-adsorbed methylamine exhibited the highest reactivity, about 4.5 times higher than that of pure hematite, whereas the effects of phenylamine and pyrrole were not obvious. The reaction rates with the basic substances were in the order of methylamine>trimethylamine>ammonia>triethylamine>pyridine> pyrrole> phenylamine≈pure hematite. The basic substances changed the reaction order from first to second. Coverage by the basic substances and surface water also played important roles in the heterogeneous reaction of COS. These experimental results indicated that surface oxygen species (M―O-) were the key factor contributing to oxidizing activities in the presence of basic substances. The heterogeneous oxidation mechanism of COS on hematite with pre-adsorbed basic substances is discussed on the basis of the experimental results.

  • 加载中
    1. [1]

      (1) Turco, R. P.;Whitten, R. C.; Toon, O. B.; Pollack, J. B.; Hamill,P. Nature 1980, 283, 283. doi: 10.1038/283283a0

    2. [2]

      (2) Sze, N. D.; Ko, M. K. W. Nature 1979, 278, 731. doi: 10.1038/278731a0

    3. [3]

      (3) Sze, N. D.; Ko, M. K. W. Nature 1979, 280, 308. doi: 10.1038/280308a0

    4. [4]

      (4) Sze, N. D.; Ko, M. K. W. Atmos. Environ. 1980, 14, 1223. doi: 10.1016/0004-6981(80)90225-5

    5. [5]

      (5) Svoronos, P. D. N.; Bruno, T. J. Ind. Eng. Chem. Res. 2002, 41,5321. doi: 10.1021/ie020365n

    6. [6]

      (6) Torres, A. L.; Maroulis, P. J.; ldberg, A. B.; Bandy, A. R. J. Geophys. Res. 1980, 85, 7357. doi: 10.1029/JC085iC12p07357

    7. [7]

      (7) Rasmussen, R. A.; Khalil, M. A. K.; Hoyt, S. D. Atmos. Environ.1982, 16, 1591. doi: 10.1016/0004-6981(82)90111-1

    8. [8]

      (8) Watts, S. F. Atmos. Environ. 2000, 34, 761. doi: 10.1016/S1352-2310(99)00342-8

    9. [9]

      (9) Wu, H. B.; Wang, X.; Chen, J. M.; Yu, H. K.; Xue, H. X.; Pan,X. X.; Hou, H. Q. Chin. Sci. Bull. 2004, 49, 739. [吴洪波,王晓, 陈建民,俞宏坤, 薛华欣,潘循晳, 侯惠奇.科学通报,2004, 49, 739.] doi: 10.1360/03wb0132

    10. [10]

      (10) He, H.; Liu, J. F.; Mu, Y. J.; Yu, Y. B.; Chen, M. X. Environ. Sci. Technol. 2005, 39, 9637. doi: 10.1021/es048865q

    11. [11]

      (11) Liu, J. F.; Yu, Y. B.; Mu, Y. J.; He, H. J. Phys. Chem. B 2006,110, 3225. doi: 10.1021/jp055646y

    12. [12]

      (12) Liu, Y. C.; He, H.; Xu, W. Q.; Yu, Y. B. J. Phys. Chem. A 2007,111, 4333. doi: 10.1021/jp069015v

    13. [13]

      (13) Liu, Y. C.; He, H. J. Phys. Chem. A 2009, 113, 3387. doi: 10.1021/jp809887c

    14. [14]

      (14) Chen, H. H.; Kong, L. D.; Chen, J. M.; Zhang, R. Y.; Wang, L.Environ. Sci. Technol. 2007, 41, 6484. doi: 10.1021/es070717n

    15. [15]

      (15) Yu, Y. J.; Zhang, S. Q.; Kong, L. D.; Lin, L.; Cheng, T. T.; Chen,J. M. Acta Phys. -Chim. Sin. 2011, 27, 2275. [俞偐偼,张拴勤,孔令东,林立,成天涛,陈建民. 物理化学学报, 2011, 27,2275.] doi: 10.3866/PKU.WHXB20110912

    16. [16]

      (16) Usher, C. R.; Michel, A. E.; Grassian, V. H. Chem. Rev. 2003,103, 4883. doi: 10.1021/cr020657y

    17. [17]

      (17) Wang, X. F.; Gao, S.; Yang, X.; Chen, H.; Chen, J. M.; Zhuang,G. S.; Surratt, J. D.; Chan, M. N.; Seinfeld, J. H. Environ. Sci. Technol. 2010, 44, 4441. doi: 10.1021/es1001117

    18. [18]

      (18) Cadle, S. H.; Mulawa, P. A. Environ. Sci. Technol. 1980, 14,718. doi: 10.1021/es60166a011

    19. [19]

      (19) Westerholm, R.; Li, H.; Almen, J. Chemosphere 1993, 27, 1381.doi: 10.1016/0045-6535(93)90231-S

    20. [20]

      (20) Chen, C. P.; Veregin, R. P.; Harbour, J. R.; Hair, M. L. Chin. Sci. Bull. 1994, 39, 744. [陈次平, Veregin, R. P., Harbour, J. R.,Hair, M. L.科学通报, 1994, 39, 744.]

    21. [21]

      (21) Vanneste, A.; Duce, R. A.; Lee, C. Geophys. Res. Lett. 1987, 14,711. doi: 10.1029/GL014i007p00711

    22. [22]

      (22) Zhang, Q.; Anastasio, C. Atmos. Environ. 2003, 37, 2247. doi: 10.1016/S1352-2310(03)00127-4

    23. [23]

      (23) Lavalley, J. C. Catal. Today 1996, 27, 377. doi: 10.1016/0920-5861(95)00161-1

    24. [24]

      (24) Lercher, J. A.; Grundling, C.; EderMirth, G. Catal. Today 1996,27, 353. doi: 10.1016/0920-5861(95)00248-0

    25. [25]

      (25) Sarria, F. R.; Blasin-Aube, V.; Saussey, J.; Marie, O.; Daturi, M.J. Phys. Chem. B 2006, 110, 13130. doi: 10.1021/jp061729i

    26. [26]

      (26) Qiu, C.; Zhang, R. Y. Environ. Sci. Technol. 2012, 46, 4474.doi: 10.1021/es3004377

    27. [27]

      (27) Gai, Y. B.; Ge, M. F.; Wang, W. G. Acta Phys. -Chim. Sin. 2010,26, 1768. [盖艳波, 葛茂发, 王玮罡. 物理化学学报, 2010,26, 1768.] doi: 10.3866/PKU.WHXB20100705

    28. [28]

      (28) Yin, S.; Ge, M. F.; Wang, W. G.; Liu, Z.; Wang, D. X. Chin. Sci. Bull. 2011, 56, 1241. [殷实,葛茂发,王炜罡,刘泽,王殿勋.科学通报, 2011, 56, 1241.]

    29. [29]

      (29) Qiu, C.; Wang, L.; Lal, V.; Khalizov, A. F.; Zhang, R. Y.Environ. Sci. Technol. 2011, 45, 4748. doi: 10.1021/es1043112

    30. [30]

      (30) Dohrmann, J.; Glebov, A.; Toennies, J. P.; Weiss, H. Surf. Sci .1996, 368, 118. doi: 10.1016/S0039-6028(96)01038-2

    31. [31]

      (31) Amenomiya, Y.; Morikawa, Y.; Pleizier, G. J. Catal. 1977, 46,431. doi: 10.1016/0021-9517(77)90230-5

    32. [32]

      (32) Turek, A. M.; Wachs, I. E.; Decanio, E. J. Phys. Chem. 1992,96, 5000. doi: 10.1021/j100191a050

    33. [33]

      (33) Lavalley, J. C.; Travert, J.; Chevreau, T.; Lamotte, J.; Saur, O. J.Chem. Sci. Chem. Commun. 1979, 146.

    34. [34]

      (34) Morterra, C.; Zecchina, A.; Coluccia, S.; Chiorino, A. J. Chem. Soc. Faraday Trans I. 1977, 73, 1544. doi: 10.1039/f19777301544

    35. [35]

      (35) Molina, R.; Centeno, M. A.; Poncelet, G. J. Phys. Chem. B1999, 103, 6036.

    36. [36]

      (36) The Sadtler Handbook of Infrared Spectra. Bio-RadLaboratories, Inc., Informatics Divison: Htercules, California,USA, 1978-2004.

    37. [37]

      (37) Finlayson-Pitts, B. J.; Wingen, L. M.; Sumber, A. L.; Syomin,D.; Ramazan, K. A. Phys. Chem. Chem. Phys. 2003, 5, 223. doi: 10.1039/b208564j

    38. [38]

      (38) Xu, B. Y.; Zhu, T.; Tang, X. Y.; Ding, J.; Li, H. J. Chem. J. Chin. Univ. 2006, 27, 1912. [徐冰烨,朱彤,唐孝炎,丁杰,李宏军.高等学校化学学报, 2006, 27, 1912.]

    39. [39]

      (39) Borensen, C.; Kirchner, U.; Scheer, V.; Vogt, R.; Zellner, R.J. Phys. Chem. A 2000, 104, 5036. doi: 10.1021/jp994170d

    40. [40]

      (40) Li, Q. X.; Hou, S. Z.; Xing, Y. Z.; Wei, H. W.; Li, M. China Surfactant Detergent & Consmetics 2000, 30, 50. [李秋小,侯素珍, 邢英站, 魏海威,李明. 日用化学工业, 2000, 30,50.]

    41. [41]

      (41) Rhodes, C.; Riddel, S. A.; West, J.;Williams, B. P.; Hutchings,G. J. Catal. Today 2000, 59, 443. doi: 10.1016/S0920-5861(00)00309-6

    42. [42]

      (42) Simmons, G. W.; Beard, B. C. J. Phys. Chem. 1987, 91, 1143.doi: 10.1021/j100289a025


  • 加载中
    1. [1]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    6. [6]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    14. [14]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(517)
  • Abstract views(823)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return