Citation: SONG Hui, XU Xian-Zhi, LI Fen. Numerical Simulation of Discharge Process and Failure Mechanisms of Zinc Electrode[J]. Acta Physico-Chimica Sinica, ;2013, 29(09): 1961-1974. doi: 10.3866/PKU.WHXB201306144 shu

Numerical Simulation of Discharge Process and Failure Mechanisms of Zinc Electrode

  • Received Date: 2 May 2013
    Available Online: 14 June 2013

    Fund Project: 国家自然科学基金(10872193)资助项目 (10872193)

  • Zinc-air battery is a high-power electrochemical system. Experimental data indicate that material usage decreases significantly with increasing applied current density. A one-dimensional mathematical model was established to simulate the discharge process of a high-power zinc electrode working under high current density conditions. Variable distributions within the electrode such as ionic concentrations, transfer current density, electrode porosity, and volume fraction of solid zinc oxide were predicted based on numerical solutions. The results demonstrate that the limitation of the mass transfer process by precipitation of solid zinc oxide is the main factor causing electrode failure. The precipitation time of solid zinc oxide and its concentrated distribution area have significant impacts on the electrode performance. The limitation of the mass transfer process is greatly aggravated if the volume fraction of zinc oxide exceeds specific values within a small range, approximately 30%-35%. The optimal designs of zinc electrodes were discussed. The numerical results indicate that high-power electrodes with higher ionic conductivities and porosities behave better. However, the most important requirement is to maintain a relatively high concentration of hydroxyl ions. For enclosed electrodes, infusion is an effective method, whereas an ideal design would consist of an open system with a circulating electrolyte, such as fluidized bed electrolyte.

  • 加载中
    1. [1]

      (1) Brodd, R. J.; Bullock, K. R.; Leising, R. A.; Middaugh, R. L.;Miller, J. R.; Takeuchi, E. Journal of the Electrochemical Society 2004, 151, K1.

    2. [2]

      (2) Sapkota, P.; Kim, H. Journal of Industrial and Engineering Chemistry 2009, 15, 445. doi: 10.1016/j.jiec.2009.01.002

    3. [3]

      (3) ldstein, J. R.; Gektin, I.; Koretz, B. Electric Fuel TM Zinc-Air Battery Regeneration Technology; In The 1995 Annual Meetin f the Applied Electrochemistry Division of the GermanChemical Society, Duisburg, Germany, Sept 27-29, 1995.

    4. [4]

      (4) Ou, X. Q.; Liang, G. C. Battery Bimonthly 2006, 36, 274. [欧秀芹,梁广川. 电池, 2006, 36, 274.]

    5. [5]

      (5) Li, F.; Xu, X. Z.; Song, H.; Xiong, J.; Wu, F. Acta Phys. -Chim. Sin. 2009, 25 (11), 2205. [李芬,徐献芝,宋辉,熊晋,吴飞.物理化学学报, 2009, 25 (11), 2205.] doi: 10.3866/PKU.WHXB20091119

    6. [6]

      (6) Li, S. Z.; Sun, L.; Hu, R. G.; Wang, Z. L.; Zhang, X. G.; Lin, C.J. Acta Phys. -Chim. Sin. 2009, 25 (8), 1635. [李思振,孙岚,胡融刚, 王志林,章小鸽, 林昌健.物理化学学报, 2009, 25 (8),1635.] doi: 10.3866/PKU.WHXB20090804

    7. [7]

      (7) Choi, K. W.; Bennion, D. N.; Newman, J. Journal of the Electrochemical Society 1976, 123, 1616. doi: 10.1149/1.2132657

    8. [8]

      (8) Sunu, W. G. Transient and Failure Analyses of Porous Zinc Electrodes; University of California: Los Angeles, 1978.

    9. [9]

      (9) Sunu, W. G.; Bennion, D. N. Journal of the Electrochemical Society 1980, 127, 2007. doi: 10.1149/1.2130054

    10. [10]

      (10) Isaacson, M. J.; McLarnon, F. R.; Cairns, E. J. Journal of the Electrochemical Society 1990, 137, 2014. doi: 10.1149/1.2086856

    11. [11]

      (11) Podlaha, E. J.; Cheh, H. Y. Journal of the Electrochemical Society 1994, 141, 15.

    12. [12]

      (12) Mao, Z. Journal of the Electrochemical Society 1992, 139,1105. doi: 10.1149/1.2069348

    13. [13]

      (13) Venkatraman, M.; Vanzee, J. Journal of Power Sources 2007,166, 537. doi: 10.1016/j.jpowsour.2006.12.064

    14. [14]

      (14) Torabi, F.; Aliakbar, A. Journal of the Electrochemical Society2012, 159, A1986.

    15. [15]

      (15) Zhang, X. G. Corrosion and Electrochemistry; MetallurgicalIndustry Press: Beijing, 2008; pp 491, 463, 464. [章小鸽. 锌的腐蚀与电化学. 北京: 冶金工业出版社, 2008: 491, 463, 464.]

    16. [16]

      (16) Sunu, W. G.; Bennion, D. N. Journal of the Electrochemical Society 1980, 127, 2007. doi: 10.1149/1.2130054

    17. [17]

      (17) Bockris, J. O.; Nagy, Z.; Damjanovic, A. Journal of the Electrochemical Society 1972, 119, 285. doi: 10.1149/1.2404188

    18. [18]

      (18) Butler, J. N. Ionic Equilibrium: A Mathematical Approach, 10thed.; Addison-Wesley: Reading, MA, 1964.

    19. [19]

      (19) Boden, D. P.; Wylie, R. B.; Spera, V. J. Journal of the Electrochemical Society 1971, 118, 1298. doi: 10.1149/1.2408309

    20. [20]

      (20) Kong, X. Y. Advanced Mechanics of Fluids in Porous Media;University of Science and Technology of China Press: Hefei,1999. [孔祥言. 高等渗流力学. 合肥: 中国科学技术大学出版社, 1999.]

    21. [21]

      (21) Kriegsmann, J. Journal of Power Sources 1999, 84, 52.

    22. [22]

      (22) Kordesch, K. V. In Batteries, Manganese Dioxide; MarcelDekker: NewYork, 1974; p 348.

    23. [23]

      (23) Newman, J.; Thomas-Alyea, K. E. Electrochemical Systems;Wiley: Hoboken, New Jersey, 2012; p 303.

    24. [24]

      (24) Um, S.; Wang, C.; Chen, K. S. Engineering Sciences 2000, 147,4485.

    25. [25]

      (25) Wang, C. Journal of Power Sources 2002, 110, 364. doi: 10.1016/S0378-7753(02)00199-4

    26. [26]

      (26) Tao, W. Q. Nemerical Heat Transfer, 2nd ed.; Xi'an JiaotongUniversity: Xi'an, 2001. [陶文铨.数值传热学.第二版.西安:西安交通大学出版社, 2001.]

    27. [27]

      (27) Versteeg, H. K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: the Finite Volume Method;Pearson Education Limited: New Jersey, 2007.

    28. [28]

      (28) Moré, J. J.; Garbow, B. S.; Hillstrom, K. E. User Guide for MINPACK-1, CM-P00068642, 1980.

    29. [29]

      (29) Powers, R. W.; Breiter, M. W. Journal of the Electrochemical Society 1969, 116, 719. doi: 10.1149/1.2412040

    30. [30]

      (30) Powers, R. W. Journal of the Electrochemical Society 1971, 118,685. doi: 10.1149/1.2408145

    31. [31]

      (31) Powers, R. W. Journal of the Electrochemical Society 1969, 116,1652. doi: 10.1149/1.2411652

    32. [32]

      (32) Liu, M.; Cook, G. M.; Yao, N. P. Journal of the Electrochemical Society 1981, 128, 1663. doi: 10.1149/1.2127707

    33. [33]

      (33) Cabot, P. L.; Cortes, M.; Centellas, F.; Perez, E. Journal of Applied Electrochemistry 1993, 23, 371. doi: 10.1007/BF00296694

    34. [34]

      (34) Cabot, P. L.; Cortes, M.; Centellas, F. A.; Garrido, J. A.; Perez,E. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 201, 85. doi: 10.1016/0022-0728(86)90089-6

    35. [35]

      (35) Colborn, J. A.;Wright, K. A.; Gulino, R. Method and Apparatusfor Refueling an Electrochemical Power Source. US Patent5952117, 1999.


  • 加载中
    1. [1]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    4. [4]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    5. [5]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    10. [10]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    11. [11]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    12. [12]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    13. [13]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    14. [14]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    15. [15]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    16. [16]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    17. [17]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    18. [18]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    19. [19]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    20. [20]

      Haifeng Ma Xiaocong Tian Fengbin Wang Zhonghua Xi QingWang . Design of College Chemistry Experiment Based on Product Quality Control: Taking “Optimization of Ferrous Fumarate Synthesis Process” as an Example. University Chemistry, 2025, 40(7): 321-327. doi: 10.12461/PKU.DXHX202409056

Metrics
  • PDF Downloads(538)
  • Abstract views(715)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return