Citation: LIU Tian-Qing, SUN Wei, LI Xiang-Qin, SUN Xiang-Yu, AI Hong-Ru. Growth Modes of Condensates on Nanotextured Surfaces and Mechanism of Partially Wetted Droplet Formation[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1762-1770. doi: 10.3866/PKU.WHXB201306033 shu

Growth Modes of Condensates on Nanotextured Surfaces and Mechanism of Partially Wetted Droplet Formation

  • Received Date: 23 April 2013
    Available Online: 3 June 2013

    Fund Project: 国家自然科学基金(50876015)资助项目 (50876015)

  • The energy increasing rate (EIR) of a condensed droplet was analyzed during its growth in three different modes. The lowest EIR corresponding to one of the three ways was used as the criterion to determine the mode in which a condensed drop will increase its volume. The results show that the EIR according to the mode of increasing contact angle (CA) is much smaller than that according to the two other modes during the first period of growth of a condensate spot formed within a nanostructure. This means that the drop will grow, with CA increasing but the base area remaining constant, until a certain CA. After this, the EIR according to the mode of CA increasing becomes much higher than that according to the two other modes. The three-phase contact line of the drop starts to shift and the base area begins to increase while the CA remains constant. During this second period, the state of increased base area can be wetted; i.e., a Wenzel-state droplet forms with an apparent CA less than 160°. In contrast, the expanded base area can be in a composite state; i.e., a partially wetted droplet forms with a CA greater than 160° . The growth mode and its wetted state of a condensed droplet are strongly related to nanostructure. Partially wetted condensed drops can appear only on surfaces with nanopillars of a certain height and small pitch. The calculated results were consistent with experimental observations reported in the literature for the wetting states of condensed drops on nanotextured surfaces, with an accuracy of 91.9%, which is obviously higher than those calculated with reported formulas.

  • 加载中
    1. [1]

      (1) Miljkovic, N.; Enright, R.; Nam, Y.; Lopez, K.; Dou, N.; Sack,J.;Wang, E. N. Nano Lett. 2013, 13, 179. doi: 10.1021/nl303835d

    2. [2]

      (2) Rykaczewski, K.; Paxson, A. T.; Anand, S.; Chen, X.;Wang, Z.;Varanasi, K. K. Langmuir 2013, 29, 881. doi: 10.1021/la304264g

    3. [3]

      (3) Narhe, R. D.; Beysens, D. A. Europhys. Lett. 2006, 75, 98.doi: 10.1209/epl/i2006-10069-9

    4. [4]

      (4) Narhe, R. D.; Beysens, D. A. Langmuir 2007, 23, 6486.doi: 10.1021/la062021y

    5. [5]

      (5) Narhe, R. D.; Beysens, D. A. Phys. Rev. Lett. 2004, 93, 076103.doi: 10.1103/PhysRevLett.93.076103

    6. [6]

      (6) Wier, K. A.; McCarthy, T. J. Langmuir 2006, 22, 2433.doi: 10.1021/la0525877

    7. [7]

      (7) Jung, Y. C.; Bhushan, B. Journal of Microscopy 2008, 229, 127.doi: 10.1111/jmi.2008.229.issue-1

    8. [8]

      (8) Lafuma, A.; Quere, D. Nat. Mater. 2003, 2, 457. doi: 10.1038/nmat924

    9. [9]

      (9) Narhe, R. D.; nzalez-Vinas,W.; Beysens, D. A. Appl. Surf. Sci. 2010, 256, 4930. doi: 10.1016/j.apsusc.2010.03.004

    10. [10]

      (10) Chen, X. L.; Lu, T. Science in China Series G (Physics, Mechanics and Astronomy) 2009, 52, 233. doi: 10.1007/s11433-009-0041-1

    11. [11]

      (11) Xiao, X.; Cheng, Y. T.; Sheldon, B.W.; Rankin, J. J. Mater. Res.2008, 23, 2174. doi: 10.1557/JMR.2008.0260

    12. [12]

      (12) Furuta, T.; Sakai, M.; Isobe, T.; Nakajima, A. Langmuir 2010,26, 13305. doi: 10.1021/la101663a

    13. [13]

      (13) Dietz, C.; Rykaczewski, K.; Fedorov, A.; Joshi, Y. J. Heat Transfer 2010, 132, 080904. doi: 10.1115/1.4001752

    14. [14]

      (14) Kulinich, S. A.; Farhadi, S.; Nose, K.; Du, X.W. Langmuir2011, 27, 25. doi: 10.1021/la104277q

    15. [15]

      (15) Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.;Amaratunga, G. A. J.; Milne,W. I.; Mckinley, G. H.; Gleason,K. K. Nano Lett. 2003, 3, 1701. doi: 10.1021/nl034704t

    16. [16]

      (16) Dorrer, C.; Ruehe, J. Adv. Mater. 2008, 20, 159.

    17. [17]

      (17) Chen, C. H.; Cai, Q. J.; Tsai, C. L.; Chen, C. L.; Xiong, G. Y.;Yu, Y.; Ren, Z. F. Appl. Phys. Lett. 2007, 90, 173108.doi: 10.1063/1.2731434

    18. [18]

      (18) Boreyko, J. B.; Chen, C. H. Phys. Rev. Lett. 2009, 103, 184501.doi: 10.1103/PhysRevLett.103.184501

    19. [19]

      (19) Boreyko, J. B.; Chen, C. H. Phys. Fluids 2010, 22, 091110.doi: 10.1063/1.3483222

    20. [20]

      (20) Chen, X. M.;Wu, J.; Ma, R. Y.; Hua, M.; Koratkar, N.; Yao, S.H.;Wang, Z. K. Adv. Funct. Mater. 2011, 21, 4617. doi: 10.1002/adfm.v21.24

    21. [21]

      (21) Dietz, C.; Rykaczewski, K.; Fedorov, A. G.; Joshi, Y. Appl. Phys. Lett. 2010, 97, 033104. doi: 10.1063/1.3460275

    22. [22]

      (22) Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang,W.; Deng, T. Appl. Phys. Lett. 2009, 95, 094101. doi: 10.1063/1.3200951

    23. [23]

      (23) Huang, L. Y.; Liu, Z. L.; Liu, Y. M.; u, Y. J. Int. J. Therm. Sci. 2011, 50, 432. doi: 10.1016/j.ijthermalsci.2010.11.011

    24. [24]

      (24) He, M.;Wang, J. J.; Li, H. L.; Song, Y. L. Soft Matter 2011, 7,3993. doi: 10.1039/c0sm01504k

    25. [25]

      (25) He, M.; Zhou, X.; Zeng, X. P.; Cui, D. P.; Zhang, Q. L.; Chen,J.; Li, H. L.;Wang, J. J.; Cao, Z. X.; Song, Y. L.; Jiang, L. Soft Matter 2012, 8, 6680. doi: 10.1039/c2sm25828e

    26. [26]

      (26) Feng, J.; Qin, Z. Q.; Yao, S. H. Langmuir 2012, 28, 6067.doi: 10.1021/la300609f

    27. [27]

      (27) Miljkovic, N.; Enright, R.;Wang, E. N. ACS Nano 2012, 6,1776. doi: 10.1021/nn205052a

    28. [28]

      (28) Enright, R.; Miljkovic, N.; Al-Obeidi, A.; Thompson, C. V.;Wang, E. N. Langmuir 2012, 28, 14424. doi: 10.1021/la302599n

    29. [29]

      (29) Ko, T. J.; Her, E. K.; Shin, B.; Kim, H. Y.; Lee, K. R.; Hong, B.K.; Kim, S. H.; Oh, K. H.; Moon, M.W. Carbon 2012, 50,5085. doi: 10.1016/j.carbon.2012.06.048

    30. [30]

      (30) Rykaczewski, K.; Osborn,W. A.; Chinn, J.;Walker, M. L.;Scott, J. H. J.; Jones,W.; Hao, C. L.; Yao, S. H.;Wang, Z. K.Soft Matter 2012, 8, 8786. doi: 10.1039/c2sm25502b

    31. [31]

      (31) Yu, T. S.; Park, J.; Lim, H.; Breuer, K. S. Langmuir 2012, 28,12771. doi: 10.1021/la301901m

    32. [32]

      (32) Zhang, Q. L.; He, M.; Zeng, X. P.; Li, K. Y.; Cui, D. P.; Chen, J.;Wang, J. J.; Song, Y. L.; Jiang, L. Soft Matter 2012, 8, 8285.doi: 10.1039/c2sm26206a

    33. [33]

      (33) Feng, J.; Pang, Y. C.; Qin, Z. Q.; Ma, R. Y.; Yao, S. H. ACS Appl. Mater. Interfaces 2012, 4, 6618. doi: 10.1021/am301767k

    34. [34]

      (34) Rykaczewski, K. Langmuir 2012, 28, 7720. doi: 10.1021/la301618h

    35. [35]

      (35) Rykaczewski, K.; Landin, T.;Walker, M. L.; Scott, J. H.;Varanasi, K. K. ACS Nano 2012, 6, 9326. doi: 10.1021/nn304250e

    36. [36]

      (36) Cheng, J. T.; Vandadi, A.; Chen, C. L. Appl. Phys. Lett. 2012,101, 131909. doi: 10.1063/1.4756800

    37. [37]

      (37) Anand, S.; Paxson, A. T.; Dhiman, R.; Smith, J. D.; Varanasi, K.K. ACS Nano 2012, 6, 10122. doi: 10.1021/nn303867y

    38. [38]

      (38) Shin, B. S.; Lee, K. R.; Moon, M.W.; Kim, H. Y. Soft Matter2012, 8, 1817. doi: 10.1039/c1sm06867a

    39. [39]

      (39) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Langmuir 2010, 26,14835. doi: 10.1021/la101845t

    40. [40]

      (40) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Acta Physico-Chimica Sinica 2010, 26, 2989. [刘天庆, 孙玮, 孙相彧, 艾宏儒.物理化学学报, 2010, 26, 2989.] doi: 10.3866/PKU.WHXB20101025

    41. [41]

      (41) Rykaczewski, K.; Scott, J. H. J. ACS Nano 2011, 5, 5962.doi: 10.1021/nn201738n

    42. [42]

      (42) Wang, F. C.; Yang, F. Q.; Zhao, Y. P. Appl. Phys. Lett. 2011, 98,053112. doi: 10.1063/1.3553782

    43. [43]

      (43) Harris, J.W.; Stocker, H. Handbook of Mathematics and Computational Science; Springer-Verlag: New York, 1998;p 107.

    44. [44]

      (44) Hsieh, C. T.;Wu, F. L.; Chen,W. Y. J. Phys. Chem. C 2009, 113,13683. doi: 10.1021/jp9036952

    45. [45]

      (45) Iliev, S. D. J. Colloid Interface Sci. 1997, 194, 287.doi: 10.1006/jcis.1997.5110

    46. [46]

      (46) Andrieu, C.; Sykes, C.; Brochard, F. Langmuir 1994, 10, 2077.doi: 10.1021/la00019a010

    47. [47]

      (47) Dorrer, C.; Ruehe, J. Langmuir 2007, 23, 3820. doi: 10.1021/la063130f

    48. [48]

      (48) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Colloid Surface A2012, 414, 366. doi: 10.1016/j.colsurfa.2012.08.063

    49. [49]

      (49) Liu, T. Q.; Sun,W.; Sun, X. Y.; Ai, H. R. Acta Physico-Chimica Sinica 2012, 28, 1206. [刘天庆, 孙玮, 孙相彧, 艾宏儒.物理化学学报, 2012, 28, 1206.] doi: 10.3866/PKU.WHXB201202293

    50. [50]

      (50) Torresin, D.; Tiwari, M. K.; Del Col, D.; Poulikakos, D.Langmuir 2013, 29, 840. doi: 10.1021/la304389s


  • 加载中
    1. [1]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    2. [2]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    3. [3]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    4. [4]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    5. [5]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    6. [6]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    9. [9]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    10. [10]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    11. [11]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    12. [12]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    15. [15]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    18. [18]

      Qiong Luo Zhiguang Xu Xuan Xu Ganquan Wang Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016

    19. [19]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

Metrics
  • PDF Downloads(796)
  • Abstract views(1248)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return