Citation: MA Kai-Guo, FANG Tan, BAI Jin-Yi, GUO Hai-Qing. Effects of Derivatives of 3-Mercaptoisobutyric Acid on the Aqueous Synthesis of CdTe Quantum Dots[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1814-1818. doi: 10.3866/PKU.WHXB201305301 shu

Effects of Derivatives of 3-Mercaptoisobutyric Acid on the Aqueous Synthesis of CdTe Quantum Dots

  • Received Date: 4 February 2013
    Available Online: 30 May 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB933300)资助 (973) (2011CB933300)

  • Mercapto acids can affect the obtaining CdTe quantum dots (QDs) with narrow size distribution and high fluorescent quantum yield (QY) that emit in the red to near-infrared region. To study their effects on CdTe QDs, three types of derivatives of 3-mercaptoisobutyric acid (MIBA) were designed and synthesized: hydrophilic side-chain derivative N-acetylcysteine (ACys), hydrophobic side-chain derivatives 3-mercapto-2-methylbutyric acid (MMBA) and 3-mercapto-2,2-dimethylpropanoic acid (MDMPA), and hydrophilic main-chain derivatives 3-mercaptoisobutoyl-3-aminopropanoic acid (MIBAPA), 3-mercaptoisobutoylglycine (MIBGly) and 3-mercaptoisobutoylaspartic acid (MIBAsp). To evaluate the effects of these MIBA derivatives on the properties of CdTe QDs, they were used as capping agents during hydrothermal synthesis of the QDs with sodium tellurite as the tellurium source. The effects of the mercapto acids were revealed by comparing the growth rate, and full width at half-maximum (FWHM) of the fluorescent peak of CdTe QDs capped with different mercapto acids. All three types of MIBA derivatives gave CdTe QDs with relatively narrow FWHM, similar to MIBA. The hydrophilic MIBA derivatives (ACys, MIBGly, MIBAPA, and MIBAsp) produced CdTe QDs with longer emission wavelength than those from hydrophobic derivatives. Hydrophilic side-chain MIBA, derivative ACys gave CdTe QDs with stronger fluorescence.

  • 加载中
    1. [1]

      (1) Medintz, I. L.; Uyeda, H. T.; ldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4 (6), 435. doi: 10.1038/nmat1390

    2. [2]

      (2) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose,S.; Li, J. J.; Sundaresan, G.;Wu, A. M.; Gambhir, S. S.;Weiss,S. Science 2005, 307 (5709), 538. doi: 10.1126/science.1104274

    3. [3]

      (3) Ling, X.; Deng, D.W.; Zhong,W. Y.; Yu, J. S. Spectrosc. Spect. Anal. 2008, 28 (6), 1317. [凌霞, 邓大伟, 钟文英, 于俊生.光谱学与光谱分析, 2008, 28 (6), 1317.]

    4. [4]

      (4) Liu, X.; Chen, D. N.; Qu, J. L.; Yang, J. T.; Luo, Y. X.; Roy, I.;Wang, X. M.; Lin, X. T.; Zhong, L.; Prasad, P. N.; Xu, G. X.;Niu, H. B. Spectrosc. Spect. Anal. 2010, 30 (5), 1290.[刘夏, 陈丹妮, 屈军乐, 杨坚泰, 罗永祥, Roy, Indrajit, 王晓梅, 林晓潭, 钟磊, Prasad, N Paras, 许改霞, 牛憨笨. 光谱学与光谱分析, 2010, 30 (5), 1290.]

    5. [5]

      (5) Zhang, L. P.; Hu, B.;Wang, J. H. Chem. J. Chin. Univ. 2011, 32 (3), 688. [张立佩, 胡博, 王建华. 高等学校化学学报,2011, 32 (3), 688.]

    6. [6]

      (6) Wang, S. S.;Wang, X. T.; Guo, M. M.; Yu, J. S. Chem. J. Chin. Univ. 2012, 33 (6), 1195. [王珊珊, 王雪婷, 郭明明, 于俊生.高等学校化学学报, 2012, 33 (6), 1195.]

    7. [7]

      (7) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.;Shevchenko, E. V.; Kornowski, A.; Eychmuller, A.;Weller, H.J. Phys. Chem. B 2002, 106 (29), 7177. doi: 10.1021/jp025541k

    8. [8]

      (8) Peng, J.; Fang, X. M.; Chen, Z. H.; Zhang, Z. G. Acta Phys. -Chim. Sin. 2012, 28 (1), 232. [彭静, 方晓明, 陈志鸿, 张正国. 物理化学学报, 2012, 28 (1), 232.] doi: 10.3866/PKU.WHXB201111151

    9. [9]

      (9) Wang, Y.; Hou, Y. B.; Tang, A.W.; Feng, B.; Li, Y.; Teng, F.Acta Phys. -Chim. Sin. 2008, 24 (2), 296. [王琰, 侯延冰, 唐爱伟, 封宾, 李妍, 滕枫. 物理化学学报, 2008, 24 (2),296.] doi: 10.3866/PKU.WHXB20080219

    10. [10]

      (10) Xu, Z.; Li, D. M.; Yao, Y. L.; Xiong, T. T. Acta Phys. -Chim. Sin.2009, 25 (6), 1201. [许臻, 李冬梅, 姚亚玲, 熊婷婷. 物理化学学报, 2009, 25 (6), 1201.] doi: 10.3866/PKU.WHXB20090626

    11. [11]

      (11) Zheng, L. S.; Feng, M.; Zhan, H. B. Acta Phys. -Chim. Sin.2012, 28 (1), 208. [郑立思, 冯苗, 詹红兵. 物理化学学报,2012, 28 (1), 208.] doi: 10.3866/PKU.WHXB201228208

    12. [12]

      (12) Rogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik,N.; Lesnyak, V.; Shavel, A.; Eychmuller, A.; Rakovich, Y. P.;Donegan, J. F. J. Phys. Chem. C 2007, 111 (40), 14628. doi: 10.1021/jp072463y

    13. [13]

      (13) Zhang, H.;Wang, L. P.; Xiong, H. M.; Hu, L. H.; Yang, B.; Li,W. Adv. Mater. 2003, 15 (20), 1712.

    14. [14]

      (14) Bao, H. B.; ng, Y. J.; Li, Z.; Gao, M. Y. Chem. Mater. 2004,16 (20), 3853. doi: 10.1021/cm049172b

    15. [15]

      (15) Zhang, H.;Wang, D. Y.; Mohwald, H. Angew. Chem. Int. Edit.2006, 45 (5), 748.

    16. [16]

      (16) He, Y.; Sai, L. M.; Lu, H. T.; Hu, M.; Lai,W. Y.; Fan, Q. L.;Wang, L. H.; Huang,W. Chem. Mater. 2007, 19 (3), 359. doi: 10.1021/cm061863f

    17. [17]

      (17) Zou, L.; Gu, Z. Y.; Zhang, N.; Zhang, Y. L.; Fang, Z.; Zhu,W.H.; Zhong, X. H. J. Mater. Chem. 2008, 18 (24), 2807. doi: 10.1039/b801418c

    18. [18]

      (18) Gaponik, N.; Hickey, S. G.; Dorfs, D.; Rogach, A. L.;Eychmuller, A. Small 2010, 6 (13), 1364. doi: 10.1002/smll.v6:13

    19. [19]

      (19) Gaponik, N.; Rogach, A. L. Phys. Chem. Chem. Phys. 2010, 12 (31), 8685. doi: 10.1039/c000916d

    20. [20]

      (20) Li, Y. L.; Jing, L. H.; Qiao, R. R.; Gao, M. Y. Chem. Commun.2011, 47 (33), 9293. doi: 10.1039/c1cc11331c

    21. [21]

      (21) Lesnyak, V.; Gaponik, N.; Eychmuller, A. Chem. Soc. Rev.2013, 42 (7), 2905. doi: 10.1039/c2cs35285k

    22. [22]

      (22) Acar, H. Y.; Kas, R.; Yurtsever, E.; Ozen, C.; Lieberwirth, I.J. Phys. Chem. C 2009, 113 (23), 10005. doi: 10.1021/jp811104s

    23. [23]

      (23) Fang, T.; Ma, K. G.; Ma, L. L.; Bai, J. Y.; Li, X.; Song, H. H.;Guo, H. Q. J. Phys. Chem. C 2012, 116 (22), 12346. doi: 10.1021/jp302820u

    24. [24]

      (24) Ma, K. G.; Fang, T.; Bai, J. Y.; Guo, H. Q. RSC Adv. 2013, 3 (15), 4935. doi: 10.1039/c3ra22877k

    25. [25]

      (25) Ma, K. G.; Bai, J. Y.; Fang, T.; Guo, H. Q. Nano doi: 10.1142/S1793292013500495.

    26. [26]

      (26) Aldeek, F.; Balan, L.; Lambert, J.; Schneider, R.Nanotechnology 2008, 19 (47), 475401. doi: 10.1088/0957-4484/19/47/475401


  • 加载中
    1. [1]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    2. [2]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    9. [9]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    12. [12]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    13. [13]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    14. [14]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    15. [15]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    19. [19]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    20. [20]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

Metrics
  • PDF Downloads(662)
  • Abstract views(745)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return