Citation: GE Zhen-Peng, SHI Yan-Chao, LI Xiao-Yi. Effects of Ortho nal Electric Field on Water Flux through a Carbon Nanotube[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1655-1660. doi: 10.3866/PKU.WHXB201305222 shu

Effects of Ortho nal Electric Field on Water Flux through a Carbon Nanotube

  • Received Date: 26 February 2013
    Available Online: 22 May 2013

    Fund Project: 国家自然科学基金(21274164, 21144001) (21274164, 21144001)国家重点基础研究发展规划项目(973) (2012CB934001)资助 (973) (2012CB934001)

  • Water transport in nanopores is important for many biological processes and the design of nanodevices. It has been demonstrated that water molecules are transported through a (6,6)-type carbon nanotube (CNT) by forming single-file chains. However, a controllable water flow through a CNT remains difficult to achieve. In this paper, we investigated how to control the net flux of water molecules transported through a CNT and the on-off gating behavior of the CNT using an ortho nal electric field. With a 200 MPa pressure difference acting on the top of the first layer of water molecules as the driving force, the net flux of water molecules decreased linearly as the ortho nal electric field strength (E) increased from 1 to 3 V· nm-1. When E increased over 3 V·nm-1, the flow of water molecules through the CNT was turned off and the net flux was almost zero. Both the orientation of water dipoles and flipping frequency were strongly correlated with the water occupancy in this case.

  • 加载中
    1. [1]

      (1) Zhu, F. Q.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2004, 86,50. doi: 10.1016/S0006-3495(04)74082-5

    2. [2]

      (2) Zhu, F. Q.; Tajkhorshid, E.; Schulten, K. Biophys. J. 2002, 83,154. doi: 10.1016/S0006-3495(02)75157-6

    3. [3]

      (3) Ma, M. D.; Shen, L.; Sheridan, J.; Liu, J. Z.; Chen, C.; Zheng,Q. Phys. Rev. E 2011, 83, 036316. doi: 10.1103/PhysRevE.83.036316

    4. [4]

      (4) Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Nature 2001, 414,188. doi: 10.1038/35102535

    5. [5]

      (5) Waghe, A.; Rasaiah, J. C.; Hummer, G. J. Chem. Phys. 2002,117, 10789. doi: 10.1063/1.1519861

    6. [6]

      (6) Holt, J. K.; Park, H. G.;Wang,Y. M.; Stadermann, M.; Artyukhin,A. B.; Gri ropoulos, C. P.; Noy, A.; Bakajin, O. Science 2006,312, 1034. doi: 10.1126/science.1126298

    7. [7]

      (7) Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L. R.Nano Lett. 2010, 10, 4067. doi: 10.1021/nl1021046

    8. [8]

      (8) Zhang, Z. Q.; Ye, H. F.; Liu, Z.; Ding, J. N.; Cheng, G. G.; Ling,Z. Y.; Zheng, Y. G.;Wang, L.;Wang, J. B. J. Appl. Phys. 2012,111, 114304. doi: 10.1063/1.4724344

    9. [9]

      (9) Zuo, G. C.; Shen, R.; Ma, S. J.; Guo,W. L. ACS Nano 2010, 4,205. doi: 10.1021/nn901334w

    10. [10]

      (10) Chaudhury, M. K.; Whitesides, G. M. Science 1992, 256, 1539.doi: 10.1126/science.256.5063.1539

    11. [11]

      (11) Linke, H.; Aleman, B. J.; Melling, L. D.; Taormina, M. J.;Francis, M. J.; Dow-Hygelund, C. C.; Narayanan, V.; Taylor,R. P.; Stout, A. Phys. Rev. Lett. 2006, 96, 154502. doi: 10.1103/PhysRevLett.96.154502

    12. [12]

      (12) Joseph, S.; Aluru, N. R. Phys. Rev. Lett. 2008, 101, 064502.doi: 10.1103/PhysRevLett.101.064502

    13. [13]

      (13) Joseph, S.; Aluru, N. R. Nano Lett. 2008, 8, 452. doi: 10.1021/nl072385q

    14. [14]

      (14) Vaitheeswaran, S.; Yin, H.; Rasaiah, J. C. J. Phys. Chem. B2005, 109, 6629. doi: 10.1021/jp045591k

    15. [15]

      (15) Bratko, D.; Daub, C. D.; Leung, K.; Luzar, A. J. Am. Chem. Soc.2007, 129, 2504. doi: 10.1021/ja0659370

    16. [16]

      (16) Li, J. Y.; ng, X. J.; Lu, H. J.; Li, D.; Fang, H. P.; Zhou, R. H.Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3687. doi: 10.1073/pnas.0604541104

    17. [17]

      (17) Raghunathan, A. V.; Aluru, N. R. Phys. Rev. Lett. 2006, 97.

    18. [18]

      (18) Suk, M. E.; Aluru, N. R. Phys. Chem. Chem. Phys. 2009, 11,8614. doi: 10.1039/b903541a

    19. [19]

      (19) ng, X. J.; Li, J. Y.; Lu, H. J.;Wan, R. Z.; Li, J. C.; Hu, J.;Fang, H. P. Nat. Nanotechnol. 2007, 2, 709. doi: 10.1038/nnano.2007.320

    20. [20]

      (20) Won, C. Y.; Joseph, S.; Aluru, N. R. J. Chem. Phys. 2006, 125,117701. doi: 10.1063/1.2338305

    21. [21]

      (21) Garate, J. A.; English, N. J.; MacElroy, J. M. D. J. Chem. Phys.2009, 131, 8.

    22. [22]

      (22) Dzubiella, J.; Allen, R. J.; Hansen, J. P. J. Chem. Phys. 2004,120, 5001. doi: 10.1063/1.1665656

    23. [23]

      (23) Figueras, L.; Faraudo, J. Mol. Simulat. 2012, 38, 23.doi: 10.1080/08927022.2011.599032

    24. [24]

      (24) Su, J. Y.; Guo, H. X. ACS Nano 2011, 5, 351. doi: 10.1021/nn1014616

    25. [25]

      (25) Lü, Y. J.; Chen, M. Acta Phys. -Chim. Sin. 2012, 28, 1070.[吕勇军, 陈民. 物理化学学报, 2012, 28, 1070.] doi: 10.3866/PKU.WHXB201202213

    26. [26]

      (26) LI, H. L.; Jia, Y. X.; Hu, Y. D. Acta Phys. -Chim. Sin. 2012, 28,573. [李海兰, 贾玉香, 胡仰栋. 物理化学学报, 2012, 28,573.] doi: 10.3866/PKU.WHXB201112191

    27. [27]

      (27) Zhang, X.; Zhang, Q.; Zhao, D. X. Acta Phys. -Chim. Sin. 2012,28, 1037. [张霞, 张强, 赵东霞. 物理化学学报, 2012,28, 1037.] doi: 10.3866/PKU.WHXB201203072

    28. [28]

      (28) Phillips, J. C.; Braun, R.;Wang,W.; Gumbart, J.; Tajkhorshid,E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K.J. Comput. Chem. 2005, 26, 1781.

    29. [29]

      (29) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.;Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.;Vorobyov, I.; MacKerell, A. D. J. Comput. Chem. 2010, 31, 671.

    30. [30]

      (30) Jorgensen,W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926. doi: 10.1063/1.445869

    31. [31]

      (31) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117

    32. [32]

      (32) Wan, R.; Lu, H.; Li, J.; Bao, J.; Hu, J.; Fang, H. Phys. Chem. Chem. Phys. 2009, 11, 9898. doi: 10.1039/b907926m

    33. [33]

      (33) Wan, R. Z.; Li, J. Y.; Lu, H. J.; Fang, H. P. J. Am. Chem. Soc.2005, 127, 7166. doi: 10.1021/ja050044d

    34. [34]

      (34) Yang, Y. L.; Li, X. Y.; Jiang, J. L.; Du, H. L.; Zhao, L. N.; Zhao,Y. L. ACS Nano 2010, 4, 5755. doi: 10.1021/nn1014825

    35. [35]

      (35) Liu, B.; Li, X. Y.; Li, B. L.; Xu, B. Q.; Zhao, Y. L. Nano Lett.2009, 9, 1386. doi: 10.1021/nl8030339

    36. [36]

      (36) Wu, K. F.; Zhou, B.; Xiu, P.; Qi,W. P.;Wan, R. Z.; Fang, H. P.J. Chem. Phys. 2010, 133, 204702. doi: 10.1063/1.3509396

    37. [37]

      (37) Zhu, F.; Schulten, K. Biophys. J. 2003, 85, 236. doi: 10.1016/S0006-3495(03)74469-5


  • 加载中
    1. [1]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    9. [9]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    11. [11]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    12. [12]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    13. [13]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    18. [18]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    19. [19]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    20. [20]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

Metrics
  • PDF Downloads(825)
  • Abstract views(1113)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return