Citation: WANG Yang, SHAO Xiang, WANG Bing. Preparation, Characterization and Photocatalytic Activity of Cr-Doped Rutile TiO2(110) Single Crystal Thin Films[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1363-1369. doi: 10.3866/PKU.WHXB201305221 shu

Preparation, Characterization and Photocatalytic Activity of Cr-Doped Rutile TiO2(110) Single Crystal Thin Films

  • Received Date: 2 April 2013
    Available Online: 22 May 2013

    Fund Project: 国家自然科学基金(90921013)资助项目 (90921013)

  • The growth of Cr-doped rutile TiO2(110) homoepitaxial single crystal thin films was investigated using pulsed laser deposition (PLD) method. Surface morphology and electronic structure were characterized using scanning tunneling microscopy/spectroscopy (STM/STS), X-ray and ultraviolet photoemission spectroscopy (XPS/UPS). The optical absorption spectra were measured using ultravioletvisible (UV-Vis) absorption spectroscopy. From STM images, we observed that the atomic flat TiO2(110)-(1×1) surface maintained at Cr doping concentration of 6% (atomic ratio), indicating a negligible effect of the Cr dopants on the surface morphology. The Cr doped ruteile TiO2(110) film showed higher tunneling conductance than undoped rutile single crystal. XPS and UPS spectra indicated that Cr atoms bond to lattice O, exhibiting an +3 oxidation state of +3 and introducing an impurity state above the valence band maximum by 0.4 eV. The UV-Vis absorption spectrum of the Cr doped film showed an absorbance extended to ~650 nm, in a visible light range, which was consistent with the UPS spectra. Using the Cr-doped TiO2 films, the dissociation of methanol molecules was only observed under the UV light illumination (wavelength shorter than 430 nm), however, the dissociation reaction was not observed under the visible light illumination (wavelength longer than 430 nm). Our results suggest that the monodoping by Cr element may not be sufficient to promote the visible light photoactivity of rultile TiO2(110) surface.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Zafra, A.; Garcia, J.; Milis, A.; Domenech, X. J. Mol. Catal.1991, 70, 343. doi: 10.1016/0304-5102(91)80129-Q

    3. [3]

      (3) Herrmann, J. M.; Disdier, J.; Pichat, P. J. Catal. 1988, 113, 72.doi: 10.1016/0021-9517(88)90238-2

    4. [4]

      (4) Frank, S. N.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 303.doi: 10.1021/ja00443a081

    5. [5]

      (5) Hidaka, H.; Nakamura, T.; Ishizaka, A.; Tsuchiya, M.; Zhao, J.C. J. Photochem. Photobiol. A 1992, 66, 367. doi: 10.1016/1010-6030(92)80009-K

    6. [6]

      (6) Pollema, C. H.; Hendrix, J. L.; Milosavljevic, E. B.; Solujic, L.;Nelson, J. H. J. Photochem. Photobiol. A 1992, 66, 235.doi: 10.1016/1010-6030(92)85217-I

    7. [7]

      (7) Chen, D.; Ray, A. K. Chem. Eng. Sci. 2001, 56, 1561.doi: 10.1016/S0009-2509(00)00383-3

    8. [8]

      (8) Kanki, T.; Yoneda, H.; Sano, N.; Toyoda, A.; Nagai, C. Chem. Eng. J. 2004, 97, 77. doi: 10.1016/S1385-8947(03)00112-8

    9. [9]

      (9) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W.Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004

    10. [10]

      (10) Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. J. Phys. Chem. Solids 2002, 63, 1909. doi: 10.1016/S0022-3697(02)00177-4

    11. [11]

      (11) Su, B. T.; Sun, J. X.; Hu, C. L.; Zhang, X. H.; Fei, P.; Lei, Z. Q.Acta Phys. -Chim. Sin. 2009, 25, 1561. [苏碧桃, 孙佳星, 胡常林, 张小红, 费鹏, 雷自强. 物理化学学报, 2009, 25, 1561.]doi: 10.3866/PKU.WHXB20090750

    12. [12]

      (12) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.] doi: 10.3866/PKU.WHXB20100526

    13. [13]

      (13) Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J. M. Langmuir1994, 10, 643. doi: 10.1021/la00015a010

    14. [14]

      (14) Osterwalder, J.; Droubay, T.; Kaspar, T.;Williams, J.;Wang, C.M.; Chambers, S. A. Thin Solid Films 2005, 484, 289.doi: 10.1016/j.tsf.2005.02.028

    15. [15]

      (15) Nishimura, A.; Mitsui, G.; Nakamura, K.; Hirota, M.; Hu, E. Int. J. Photoenergy 2012, 2012, 1. doi: 10.1155/2012/184169

    16. [16]

      (16) Wu, S. X.; Ma, Z.; Qin, Y. N.; Qi, X. Z.; Liang, Z. C. Acta Phys. -Chim. Sin. 2004, 20, 138. [吴树新, 马智, 秦永宁,齐晓周, 梁珍成. 物理化学学报, 2004, 20, 138.] doi: 10.3866/PKU.WHXB201210082

    17. [17]

      (17) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.;Hashimoto, K. Appl. Catal. B-Environ. 2010, 96, 142.doi: 10.1016/j.apcatb.2010.02.011

    18. [18]

      (18) Tian, B.; Li, C.; Zhang, J. Chem. Eng. J. 2012, 191, 402.doi: 10.1016/j.cej.2012.03.038

    19. [19]

      (19) Zhu, J. F.; Deng, Z. G.; Chen, F.; Zhang, J. L.; Chen, H. J.;Anpo, M.; Huang, J. Z.; Zhang, L. Z. Appl. Catal. B-Environ.2006, 62, 329. doi: 10.1016/j.apcatb.2005.08.013

    20. [20]

      (20) Herrmann, J. M. New J. Chem. 2012, 36, 883. doi: 10.1039/c2nj20914d

    21. [21]

      (21) Ohno, T.; Sarukawa, K.; Matsumura, M. New J. Chem. 2002,26, 1167. doi: 10.1039/b202140d

    22. [22]

      (22) Taguchi, T.; Saito, Y.; Sarukawa, K.; Ohno, T.; Matsumura, M.New J. Chem. 2003, 27, 1304. doi: 10.1039/b304518h

    23. [23]

      (23) Herrmann, J. M. Appl. Catal. B-Environ. 2010, 99, 461.doi: 10.1016/j.apcatb.2010.05.012

    24. [24]

      (24) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-5729(02)00100-0

    25. [25]

      (25) He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Nat. Mater. 2009, 8, 585. doi: 10.1038/nmat2466

    26. [26]

      (26) Diebold, U.; Anderson, J. F.; Ng, K. O.; Vanderbilt, D. Phys. Rev. Lett. 1996, 77, 1322. doi: 10.1103/PhysRevLett.77.1322

    27. [27]

      (27) Ohsawa, T.; Yamamoto, Y.; Sumiya, M.; Matsumoto, Y.;Koinuma, H. Langmuir 2004, 20, 3018. doi: 10.1021/la034794h

    28. [28]

      (28) Bikondoa, O.; Pang, C. L.; Ithnin, R.; Muryn, C. A.; Onishi, H.;Thornton, G. Nat. Mater. 2006, 5, 189. doi: 10.1038/nmat1592

    29. [29]

      (29) Papageorgiou, A. C.; Beglitis, N. S.; Pang, C. L.; Teobaldi, G.;Cabailh, G.; Chen, Q.; Fisher, A. J.; Hofer,W. A.; Thornton, G.Proc. Natl. Acad. Sci. 2010, 107, 2391. doi: 10.1073/pnas.0911349107

    30. [30]

      (30) Acharya, D. P.; Camillone, N., III; Sutter, P. J. Phys. Chem. C2011, 115, 12095. doi: 10.1021/jp202476v

    31. [31]

      (31) Cheung, S. H.; Nachimuthu, P.; Engelhard, M. H.;Wang, C. M.;Chambers, S. A. Surf. Sci. 2008, 602, 133. doi: 10.1016/j.susc.2007.09.061

    32. [32]

      (32) Tanner, R. E.; Liang, Y.; Altman, E. I. Surf. Sci. 2002, 506, 251.doi: 10.1016/S0039-6028(02)01388-2

    33. [33]

      (33) Maurice, V.; Cadot, S.; Marcus, P. Surf. Sci. 2000, 458, 195.doi: 10.1016/S0039-6028(00)00439-8

    34. [34]

      (34) Borodin, A.; Reichling, M. Phys. Chem. Chem. Phys. 2011, 13,15442. doi: 10.1039/c0cp02835e

    35. [35]

      (35) Zhao, Z. Y.; Liu, Q. J.; Zhang, J.; Zhu, Z. Q. Acta Phys. Sin.2007, 56, 6592. [赵宗彦, 柳清菊, 张瑾, 朱忠其. 物理学报, 2007, 56, 6592.]

    36. [36]

      (36) Zhou, C.; Ren, Z.; Tan, S.; Ma, Z.; Mao, X.; Dai, D.; Fan, H.;Yang, X.; LaRue, J.; Cooper, R.;Wodtke, A. M.;Wang, Z.; Li,Z.;Wang, B.; Yang, J.; Hou, J. J. Chem. Sci. 2010, 1, 575.doi: 10.1039/c0sc00316f

    37. [37]

      (37) Tan, S. J. Characterization of Catalytic and PhotocatalyticReactions on Rutile TiO2(110) Surface at the Single-moleculeLevel. Ph. D. Dissertation, University of Science and Technologyof China, Hefei, 2012. [谭世倞. 金红石TiO2(110)表面催化反应和光化学过程的单分子尺度微观表征[D]. 合肥: 中国科学技术大学, 2012.]

    38. [38]

      (38) de Armas, R. S.; Oviedo, J.; San Miguel, M. A.; Sanz, J. F.J. Phys. Chem. C 2007, 111, 10023. doi: 10.1021/jp0717701

    39. [39]

      (39) Tan, S.; Feng, H.; Ji, Y.;Wang, Y.; Zhao, J.; Zhao, A.;Wang, B.;Luo, Y.; Yang, J.; Hou, J. J. Am. Chem. Soc. 2012, 134, 9978.doi: 10.1021/ja211919k


  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    3. [3]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    14. [14]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    20. [20]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(1357)
  • Abstract views(1318)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return