Citation: KANG Ya-Rong, CHEN Fu-Yi. Synthesis and Application of Ag-Cu Bimetallic Dendrites[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1712-1718. doi: 10.3866/PKU.WHXB201305132 shu

Synthesis and Application of Ag-Cu Bimetallic Dendrites

  • Received Date: 14 March 2013
    Available Online: 13 May 2013

    Fund Project: 国家自然科学基金(51271148, 50971100) (51271148, 50971100) 凝固技术国家重点实验室自主研究课题(30-TP-2009) (30-TP-2009)航空科学基金(2012ZF53073)资助项目 (2012ZF53073)

  • We synthesized silver-copper (Ag-Cu) dendritic structures on Cu foil by electrodeposition and subsequent galvanic displacement reaction. The crystalline nature and morphology of the nanostructures were examined by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The morphology of the Cu precursor changed from rod to dendrite, and finally grew into foam as the overpotential was increased. When the Cu precursor was reacted with silver nitrate through galvanic displacement reaction, a foam-like precursor produced a denser, more uniform Ag-Cu dendrite. In addition, the concentration of silver nitrate solution had a considerable effect on the shape of the nanoparticles, with increasing concentration within a certain range promoting dendrite formation. The electrochemical properties of the Ag-Cu dendrite-modified electrode were characterized by linear sweep voltammetry and amperometric current-time curves. The reduction peak potential was about -0.25 V (vs a saturated calomel electrode (SCE)) in the electrolyte solution, which indicates that the as-synthesized Ag-Cu dendrites have favorable electroreduction activity towards hydrogen peroxide (H2O2). When an Ag-Cu dendrite was used as a sensor, the electrode exhibited a rapid response time of 3 s, a wide linear range of 0.1-12 mmol·L-1 H2O2, and a remarkable sensitivity of 330.36 μA·(mmol·L-1)-1·cm-2, which is particularly important to improve the accuracy of sensors.

  • 加载中
    1. [1]

      (1) Hartley, F. R. Chemistry of Platinum Group Metals: Recent Developments, 1st ed.; Elsevier Science Ltd.: London, 1991;pp 106-120.

    2. [2]

      (2) Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys. -Chim. Sin. 2010, 26 (6), 1570. [温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚. 物理化学学报, 2010, 26 (6), 1570.]doi: 10.3866/PKU.WHXB20100620

    3. [3]

      (3) Ye, S. F.; Hu, X. M.; Ying, D.; Zhang, Y. Environmental Chemistry 2011, 30, 1711. [叶舒帆, 胡筱敏, 英滇, 张杨.环境化学, 2011, 30, 1711.]

    4. [4]

      (4) Li,W. B.; ng, H. Acta Phys. -Chim. Sin. 2010, 26 (4), 885.[黎维彬, 龚浩. 物理化学学报, 2010, 26 (4), 885.]doi: 10.3866/PKU.WHXB20100436

    5. [5]

      (5) Ming, C. B.; Ye, D. Q.; Yi, H.; Fu, M. L. China Environmental Science 2009, 29, 924. [明彩兵, 叶代启, 易慧, 付名利.中国环境科学, 2009, 29, 924.]

    6. [6]

      (6) Jirkovský, J. S.; Panas, I.; Romani, S.; Ahlberg, E.; Schiffrin, D.J. J. Phys. Chem. Lett. 2012, 3, 315.

    7. [7]

      (7) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177.doi: 10.1038/nature11008

    8. [8]

      (8) Sun, X. Z.; Lin, L. H.; Li, Z. C.; Zhang, Z. J.; Feng, J. Y. Mater. Lett. 2009, 63, 2306. doi: 10.1016/j.matlet.2009.07.058

    9. [9]

      (9) Li, L. F.; Qiu, T.; Yang, J.; Feng, Y. B.; Zhang, Z. Z. Rare Metal Materials and Engineering 2010, 39, 902. [李良锋, 丘泰,杨建, 冯永宝, 张振忠. 稀有金属材料与工程, 2010, 39,902.]

    10. [10]

      (10) Li, Z. Q.; Shen, H.; Chen, L. Chinese Journal of Materials Research 1994, 8, 392. [李宗全, 沈辉, 陈莉. 材料研究学报, 1994, 8, 392.]

    11. [11]

      (11) Agrawal, V. V.; Mahalakshmi, P.; Kulkarni, G. U.; Rao, C. N. R.Langmuir 2006, 22, 1846. doi: 10.1021/la052595n

    12. [12]

      (12) Zhang, C. M.; Zhang, C. L.; Zhang, J.W.; Zhang, Z. J. Acta Phys. -Chim. Sin. 2004, 20 (5), 554. [张晟卯, 张春丽, 张经纬, 张治军. 物理化学学报, 2004, 20 (5), 554.] doi: 10.3866/PKU.WHXB20040522

    13. [13]

      (13) Hu, X. Y.;Wang, Z. Y.; Zhang, T. C.; Zeng, X. Y.; Xu,W.;Zhang, J. X.; Yan, J.; Zhang, J. P.; Zhang, L. D. Appl. Surf. Sci.2008, 254, 3845. doi: 10.1016/j.apsusc.2007.12.006

    14. [14]

      (14) Bartlettet, P. N.; Birkin, P. R.;Wang, J. H.; Palmisano, F.;Benedetto, G. D. Anal. Chem. 1998, 70, 3685. doi: 10.1021/ac971088a

    15. [15]

      (15) Wang, J.; Lin, Y. H.; Chen, L. Analyst 1993, 118, 277.doi: 10.1039/an9931800277

    16. [16]

      (16) Demirci, U. B. J. Power Sources 2007, 172, 676. doi: 10.1016/j.jpowsour.2007.05.009

    17. [17]

      (17) Zhao, B.; Liu, Z. R.; Liu, Z. l.; Liu, G. X.; Li, Z.;Wang, J. X.;Dong, X. T. Electrochem. Commun. 2009, 11, 1707.doi: 10.1016/j.elecom.2009.06.035

    18. [18]

      (18) de Lara nzález, G. L.; Kahlert, H.; Scholz, F. Electrochim. Acta 2007, 52 (5), 1968. doi: 10.1016/j.electacta.2006.08.006

    19. [19]

      (19) Rodríguez-López, J. N.; Lowe, D. J.; Hernández-Ruiz, J.; Hiner,A. N. P.; García-Cánovas, F.; Thorneley, R. N. F. J. Am. Chem. Soc. 2001, 123, 11838. doi: 10.1021/ja011853+

    20. [20]

      (20) Zhun, L. Q. Theory and Technology of the Functional Film Layer Electrodeposition; University of Aeronautics andAstronautics of Beijing Press: Beijing, 2005; pp 24-34.[朱立群. 功能膜层的电沉积理论和技术. 北京: 北京航空航天大学出版社, 2005: 24-34.]

    21. [21]

      (21) Liu, R.; Sen, A. Chem. Mater. 2011, 24 (1), 48. doi: 10.1021/cm2017714

    22. [22]

      (22) Qin, X.; Miao, Z. Y.; Fang, Y. X.; Zhang, D.; Ma, J.; Zhang, L.;Chen, Q.; Shao, X. G. Langmuir 2012, 28, 5218. doi: 10.1021/la300311v

    23. [23]

      (23) Qiu, R.; Cha, H. G.; Noh, H. B.; Shim, Y. B.; Zhang, X. L.;Qiao, R.; Zhang, D.; Kim, Y., II; Pal, U.; Kang, Y. S. J. Phys. Chem. C 2009, 113, 15891. doi: 10.1021/jp904222b

    24. [24]

      (24) Wei, G. D.; Nan, C.W.; Deng, Y.; Lin, Y. H. Chem. Mater. 2003,15 (23), 4436. doi: 10.1021/cm034628v

    25. [25]

      (25) Gu, M.; Yang, F. Z.; Huang, L.; Yao, S. B.; Zhou, S. M. Acta Phys. -Chim. Sin. 2002, 18 (11), 973. [辜敏, 杨防祖,黄令, 姚士冰, 周绍民. 物理化学学报, 2002, 18 (11), 973.]doi: 10.3866/PKU.WHXB20021103

    26. [26]

      (26) Chen, X.; Cui, C. H.; Guo, Z.; Liu, J. H.; Huang, X. J.; Yu, S. H.Small 2011, 7, 858. doi: 10.1002/smll.201002331

    27. [27]

      (27) Welch, C. M.; Banks C. E.; Simm, A. O.; Compton, R. G. Anal. Bioanal. Chem. 2005, 382, 12. doi: 10.1007/s00216-005-3205-5

    28. [28]

      (28) Wu, S.; Zhao, H. T.; Ju, H. X.; Shi, C. G.; Zhao, J.W.Electrochem. Commun. 2006, 8, 1197. doi: 10.1016/j.elecom.2006.05.013

    29. [29]

      (29) Liu, J.; Chen, F. Y.; Zhang, J. Y.; Fan, L. H.; Zhang, J. S.Chinese Journal of Materials Research 2012, 26, 49. [刘婧,陈福义, 张吉烨, 樊丽红, 张金生. 材料研究学报, 2012, 26,49.]

    30. [30]

      (30) Zhao, X. H.; Chen, F. Y.; Liu, J. Precious Metals 2012, 33 (1),21. [赵秀华, 陈福义, 刘婧. 贵金属, 2012, 33 (1), 21.]

    31. [31]

      (31) Huang, J. S.;Wang, D.W.; Hou, H. Q.; You, T. Y. Adv. Funct. Mater. 2008, 18, 441. doi: 10.1002/adfm.200700729

    32. [32]

      (32) Shi, L.; Liu, X. Q.; Niu,W. X.; Li, H. J.; Han, S.; Chen, J.; Xu,G. G. Biosens. Bioelectron. 2009, 24, 1159. doi: 10.1016/j.bios.2008.07.001

    33. [33]

      (33) Qin, X.;Wang, H. C.;Wang, X. S.; Miao, Z. Y.; Fang, Y. X.;Chen, Q.; Shao, X. G. Electrochim. Acta 2011, 56 (9), 3170.doi: 10.1016/j.electacta.2011.01.058


  • 加载中
    1. [1]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    4. [4]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    6. [6]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    7. [7]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    8. [8]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    11. [11]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    17. [17]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    18. [18]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    19. [19]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(1121)
  • Abstract views(1066)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return