Citation: LIN Xue, YU Li-Li, Yan Li-Na, GUAN Qing-Feng, Yan Yong-Sheng, ZHAO Han. Controllable Synthesis and Photocatalytic Activity of Spherical, Flowerlike and Threadlike Bismuth Vanadates[J]. Acta Physico-Chimica Sinica, ;2013, 29(08): 1771-1777. doi: 10.3866/PKU.WHXB201305131 shu

Controllable Synthesis and Photocatalytic Activity of Spherical, Flowerlike and Threadlike Bismuth Vanadates

  • Received Date: 29 January 2013
    Available Online: 13 May 2013

    Fund Project: 环境友好材料制备与应用教育部重点实验室项目和吉林省科技发展计划项目(20130522071JH)资助 (20130522071JH)

  • Spherical, flowerlike, and threadlike bismuth vanadates (BiVO4) were synthesized via a controllable hydrothermal method without using any surfactant or template. The optical and photocatalytic properties of the BiVO4 samples were investigated. The phase structures of the BiVO4 samples were observed by X-ray diffraction (XRD), which indicated that the as-prepared samples possessed monoclinic cells. Transmission electron microscope (TEM) observations showed that BiVO4 crystals with different morphologies were fabricated simply by manipulating the parameters of the hydrothermal reaction. On the basis of the structural analysis of samples obtained under different conditions, a possible mechanism for the formation of these distinct morphologies was proposed. UV-visible diffuse reflectance spectra (UV-Vis DRS) of the samples revealed that the band gaps of the BiVO4 photocatalysts were about 2.19-2.33 eV. The as-prepared BiVO4 photocatalysts exhibited higher photocatalytic activities toward the degradation of rhodamine B (RhB) under visible light irradiation (λ>420 nm) than commercial P25 TiO2 and traditional N-doped TiO2 (N-TiO2). Spherical BiVO4 showed the highest photocatalytic activity of the samples, decolorizing up to 100% of RhB upon visible light irradiation for 180 min. The reason for the different photocatalytic activities of the BiVO4 samples fabricated at different pH was systematically studied by considering their structure and morphology.

  • 加载中
    1. [1]

      (1) Hu, Y. F.; Li, Y. X.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2071. [胡元方, 李越湘,彭绍琴, 吕功煊, 李树本. 物理化学学报, 2008, 24 (11), 2071.]doi: 10.3866/PKU.WHXB20081123

    2. [2]

      (2) Mao, Y. B.;Wong, S. S. J. Am. Chem. Soc. 2006, 128, 8217.doi: 10.1021/ja0607483

    3. [3]

      (3) Li, B. X.;Wang, Y. F.; Liu, T. X. Acta Phys. -Chim. Sin. 2011,27 (12), 2946. [李本侠, 王艳芬, 刘同宣. 物理化学学报,2011, 27 (12), 2946.] doi: 10.3866/PKU.WHXB20112946

    4. [4]

      (4) Zhang, L. S.;Wang, H. L.; Chen, Z. G.;Wong, P. K.; Liu, J. S.Appl. Catal. B: Environ. 2011, 106, 1.

    5. [5]

      (5) Grasset, F.; Starukh, G.; Spanhel, L.; Ababou-Girard, S.; Su, D.S.; Klein, A. Adv. Mater. 2005, 17, 294.

    6. [6]

      (6) Grasset, F.; Spanhel, L.; Ababou-Girard, S. Superlattice Microst. 2005, 38, 300. doi: 10.1016/j.spmi.2005.08.023

    7. [7]

      (7) Yao,W. F.;Wang, H.; Xu, X. H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X. Appl. Catal. A: Gen. 2004, 259, 29.doi: 10.1016/j.apcata.2003.09.004

    8. [8]

      (8) Yao,W. F.; Xu, X. H.;Wang, H.; Zhou, J. T.; Yang, X. N.;Zhang, Y.; Shang, S. X.; Huang, B. B. Appl. Catal. B: Environ.2004, 52, 109. doi: 10.1016/j.apcatb.2004.04.002

    9. [9]

      (9) Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang,M. H.; Whangbo, M. H. Catal. Commun. 2009, 11, 210.doi: 10.1016/j.catcom.2009.10.010

    10. [10]

      (10) Zhang, Z. J.;Wang,W. Z.; Shang, M.; Yin,W. Z. Catal. Commun. 2010, 11, 982. doi: 10.1016/j.catcom.2010.04.013

    11. [11]

      (11) Zhang, L.W.;Wang, Y. J.; Cheng, H. Y.; Yao,W. Q.; Zhu, Y. F.Adv. Mater. 2009, 21, 1286. doi: 10.1002/adma.v21:12

    12. [12]

      (12) Zhuo, Y. Q.; Huang, J. F.; Cao, L. Y.; Ouyang, H. B.;Wu, J. P.Mater. Lett. 2013, 90, 107. doi: 10.1016/j.matlet.2012.09.009

    13. [13]

      (13) Tian, G. H.; Chen,Y. J.; Meng, X. Y.; Zhou, J.; Zhou,W.; Pan,K.; Tian, C. G.; Ren, Z. Y.; Fu, H. G. ChemPlusChem 2013, 78,117. doi: 10.1002/cplu.201200198

    14. [14]

      (14) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Catal. Lett. 1998, 53,229. doi: 10.1023/A:1019034728816

    15. [15]

      (15) Zhou, L.;Wang,W.; Liu, S.; Zhang, L.; Xu, H.; Zhu,W. J. Mol. Catal. A: Chem. 2006, 252, 120. doi: 10.1016/j.molcata.2006.01.052

    16. [16]

      (16) Tokunaga, S.; Kato, H.; Kudo, A. Chem. Mater. 2001, 13, 4624.doi: 10.1021/cm0103390

    17. [17]

      (17) Liu, J. B.;Wang, H.;Wang, S.; Yan, H. Mater. Sci. Eng. B 2003,104, 36. doi: 10.1016/S0921-5107(03)00264-2

    18. [18]

      (18) Sun, Y.;Wu, C.; Long, R.; Cui, Y.; Zhang, S.; Xie, Y. Chem. Cummun. 2009, 4542.

    19. [19]

      (19) Sun, Y.; Xie, Y.;Wu, C.; Long, R. Cryst. Growth Des. 2010, 10,602. doi: 10.1021/cg900988j

    20. [20]

      (20) Shang, M.;Wang,W.; Sun, S.; Ren, J.; Zhou, L.; Zhang, L.J. Phys. Chem. C 2009, 113, 20228. doi: 10.1021/jp9067729

    21. [21]

      (21) Su, J.; Guo, L.; Yoriya, S.; Grimes, C. A. Cryst. Growth Des.2010, 10, 856. doi: 10.1021/cg9012125

    22. [22]

      (22) Yu, J.; Kudo, A. Chem. Lett. 2005, 34, 850. doi: 10.1246/cl.2005.850

    23. [23]

      (23) Xi, G.; Ye, J. Chem. Commun. 2010, 46, 1893. doi: 10.1039/b923435g

    24. [24]

      (24) Zhang, L.; Chen, D.; Jiao, X. J. Phys. Chem. B 2006, 110, 2668.doi: 10.1021/jp056367d

    25. [25]

      (25) Zhao, Y.; Xie, Y.; Zhu, X.; Yan, S.;Wang, S. Chem. Eur. J. 2008,14, 1601.

    26. [26]

      (26) Hou, Y. D.;Wang, X. C.;Wu, L.; Chen, X. F.; Ding, Z. X.;Wang, X. X.; Fu, X. Z. Chemosphere 2008, 72, 414.doi: 10.1016/j.chemosphere.2008.02.035

    27. [27]

      (27) Yang, J. H.; Zheng, J. H.; Zhai, H. J.; Yang, L. L.; Lang, J. H.;Gao, M. J. Alloy. Compd. 2009, 481, 628. doi: 10.1016/j.jallcom.2009.03.108

    28. [28]

      (28) Kudo, A.; Tsuji, I.; Kato, H. Chem. Commun. 2002, 48, 1958.

    29. [29]

      (29) Xu, D.; Gao, A. M.; Deng,W. L. Acta Phys. -Chim. Sin. 2008,24 (7), 1219. [许迪, 高爱梅, 邓文礼. 物理化学学报, 2008,24 (7), 1219.] doi: 10.3866/PKU.WHXB20080717

    30. [30]

      (30) Wang, D. G.; Li, R. G.; Zhu, J.; Shi, J. Y.; Han, J. F.; Zong, X.;Li, C. J. Phys. Chem. C 2012, 116, 5082. doi: 10.1021/jp210584b

    31. [31]

      (31) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue,C. ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b

    32. [32]

      (32) Zhang, L.W.; Xu, T. G.; Zhao, X.; Zhu, Y. F. Appl. Catal. B: Environ. 2010, 98, 138. doi: 10.1016/j.apcatb.2010.05.022

    33. [33]

      (33) Wang, X.; Chen, G.; Zhou, C.; Yu, Y. G.;Wang, G. Eur. J. Inorg. Chem. 2012, 1742.

    34. [34]

      (34) Li, G. S.; Zhang, D. Q.; Yu, J. C. Chem. Mater. 2008, 20, 3983.doi: 10.1021/cm800236z

    35. [35]

      (35) Wetchakun, N.; Chaiwichain, S.; Inceesungvorn, B.; Pingmuang,K.; Phanichphant, S.; Minett, A. I.; Chen, J. ACS Appl. Mater. Interfaces 2012, 4, 3718. doi: 10.1021/am300812n

    36. [36]

      (36) Ke, D. N.; Peng, T. Y.; Ma, L.; Cai, P.; Dai, K. Inorg. Chem.2009, 48, 4685. doi: 10.1021/ic900064m

    37. [37]

      (37) García, J.; López, T.; Álvarez, M.; Aguilar, H.; Quintana, P. J.NonCryst. Solids 2008, 354, 729. doi: 10.1016/j.jnoncrysol.2007.07.074

    38. [38]

      (38) Kanagadurai, R.; Sankar, R.; Sivanesan, G.; Srinivasan, S.;Rajasekaran, R.; Jayavel, R. Mater. Chem. Phys. 2008, 108,170. doi: 10.1016/j.matchemphys.2007.09.041

    39. [39]

      (39) tic, M.; Music, S.; Ivanda, M.; Šoufek, M.; Popovic, S.J. Mol. Struct. 2005, 744, 535. doi: 10.1016/j.molstruc.2004.10.075

    40. [40]

      (40) Ge, M.; Liu, L.; Chen,W.; Zhou, Z. CrysEngComm 2012, 14,1038. doi: 10.1039/c1ce06264f

    41. [41]

      (41) Fan, H. M.; Jiang, T. F.;Wang, D. J.;Wang, L. L.; Zhai, J. L.;He, D. Q.;Wang, P.; Xie, T. F. J. Phys. Chem. C 2012, 116,2425. doi: 10.1021/jp206798d


  • 加载中
    1. [1]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    6. [6]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    11. [11]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    12. [12]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    13. [13]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    14. [14]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    20. [20]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(804)
  • Abstract views(1230)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return