Citation:
WANG Xiang, LI Ren-Gui, XU Qian, HAN Hong-Xian, LI Can. Roles of (001) and (101) Facets of Anatase TiO2 in Photocatalytic Reactions[J]. Acta Physico-Chimica Sinica,
;2013, 29(07): 1566-1571.
doi:
10.3866/PKU.WHXB201304284
-
Single crystals of anatase TiO2 with exposed (001) and (101) facets were synthesized by a hydrothermal method. We carried out photocatalytic reduction reactions to deposit noble metals (Au, Ag, and Pt) and photocatalytic oxidation reactions to deposit metal oxides (PbO2 and MnOx) on the surface of TiO2. The deposited anatase TiO2 samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) to study the roles of the two facets of anatase TiO2 in photocatalytic reactions. The noble metals were selectively deposited on the exposed (101) facet, while metal oxides were selectively deposited on the exposed (001) facet. This result indicated that photogenerated electrons and holes mainly accumulated on the (101) and (001) facets, and then took part in photocatalytic reduction and oxidation reactions, respectively. These results also suggested that the simultaneous exposure of the two facets could facilitate charge separation. Therefore, it was proposed that the simultaneous exposure of two facets with different functions will be a new strategy to effectively promote photocatalytic reaction.
-
Keywords:
-
TiO2
, - Anatase,
- Photocatalysis,
- Crystal facet,
- Charge separation
-
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Liu, G.; Zhao, Y.; Sun, C.; Li, F.; Lu, G. Q.; Cheng, H. M.Angew. Chem. Int. Edit. 2008, 47, 5277.
-
[3]
(3) Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Angew. Chem. Int. Edit. 2008, 47, 1766.
-
[4]
(4) Dholam, R.; Patel, N.; Miotello, A. Int. J. Hydrog. Energy 2011,36, 6519. doi: 10.1016/j.ijhydene.2011.03.028
-
[5]
(5) Liu, F. S.;Wang, S.; Liu, L. L.; Du, H. Renewable and Sustainable Energy II, Pts 1-4; Trans. Tech. Publications Ltd.:Switzerland, 2012; Vol. 512-515, pp 1677-1682.
-
[6]
(6) Paracchino, A.; Laporte, V.; Sivula, K.; Gratzel, M.; Thimsen, E.Nat. Mater. 2011, 10, 456. doi: 10.1038/nmat3017
-
[7]
(7) Higashimoto, S.; Ushiroda, Y.; Azuma, M. Top. Catal. 2008, 47,148. doi: 10.1007/s11244-007-9026-3
-
[8]
(8) Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331,746. doi: 10.1126/science.1200448
-
[9]
(9) Akurati, K. K.; Vital, A.; Dellemann, J. P.; Michalow, K.;Graule, T.; Fetti, D.; Baiker, A. Appl. Catal. B-Environ. 2008,79, 53. doi: 10.1016/j.apcatb.2007.09.036
-
[10]
(10) Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25, 1829.[张晓艳, 崔晓莉. 物理化学学报, 2009, 25, 1829.] doi: 10.3866/PKU.WHXB20090905
-
[11]
(11) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
-
[12]
(12) Wang, X.; Xu, Q.; Li, M. R.; Shen, S.;Wang, X. L.;Wang, Y.C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Angew. Chem. Int. Edit. 2012, 51, 13089. doi: 10.1002/anie.v51.52
-
[13]
(13) Giocondi, J. L.; Rohrer, G. S. J. Am. Ceram. Soc. 2003, 86,1182. doi: 10.1111/jace.2003.86.issue-7
-
[14]
(14) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964
-
[15]
(15) Liu, G.; Sun, C. H.; Yang, H. G.; Smith, S. C.;Wang, L. Z.; Lu,G. Q.; Cheng, H. M. Chem. Commun. 2010, 46, 755. doi: 10.1039/b919895d
-
[16]
(16) Pan, J.; Liu, G.; Lu, G. M.; Cheng, H. M. Angew. Chem. Int. Edit. 2011, 50, 2133. doi: 10.1002/anie.v50.9
-
[17]
(17) Liu, C.; Han, X. G.; Xie, S. F.; Kuang, Q.;Wang, X.; Jin, M. S.;Xie, Z. X.; Zheng, L. S. Chem. -Asian J. 2013, 8, 282. doi: 10.1002/asia.v8.1
-
[18]
(18) Ohno, T.; Sarukawa, K.; Matsumura, M. New J. Chem. 2002,26, 1167. doi: 10.1039/b202140d
-
[19]
(19) Taguchi, T.; Saito, Y.; Sarukawa, K.; Ohno, T.; Matsumura, M.New J. Chem. 2003, 27, 1304. doi: 10.1039/b304518h
-
[20]
(20) Murakami, N.; Kurihara, Y.; Tsubota, T.; Ohno, T. J. Phys. Chem. C 2009, 113, 3062. doi: 10.1021/jp809104t
-
[21]
(21) Farneth,W. E.; McLean, R. S.; Bolt, J. D.; Dokou, E.; Barteau,M. A. Langmuir 1999, 15, 8569. doi: 10.1021/la9908844
-
[22]
(22) Farneth,W. E.; Hotsenpiller, P. A. M.; Bolt, J. D.; Lowekamp, J.B.; Rohrer, G. S. Orientation Dependence of PhotochemicalReactions on TiO2 Thin Film Surfaces. In Abstracts of Papers of the American Chemical Society, University ofWashington,USA, Aug 23, 1998; Amercan Chemical Sociality:WashingtonDC, 1998; Vol. 216, U747-U747.
-
[23]
(23) Li, R.; Zhang, F.;Wang, D.; Yang, J.; Li, M.; Zhu, J.; Zhou, X.;Han, H.; Li, C. Nat. Commun. 2013, 4, 1432. doi: 10.1038/ncomms2401
-
[24]
(24) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125,3082. doi: 10.1021/ja027751g
-
[25]
(25) Oku, M.; Hirokawa, K.; Ikeda, S. J. Electron. Spectrosc. 1975,7, 465. doi: 10.1016/0368-2048(75)85010-9
-
[26]
(26) Dicastro, V.; Polzonetti, G. J. Electron. Spectrosc. 1989, 48,117. doi: 10.1016/0368-2048(89)80009-X
-
[27]
(27) Foord, J. S.; Jackman, R. B.; Allen, G. C. Philos. Mag. A 1984,49, 657. doi: 10.1080/01418618408233293
-
[28]
(28) Hengerer, R.; Kavan, L.; Krtil, P.; Grätzel, M. J. Electrochem. Soc. 2000, 147, 1467. doi: 10.1149/1.1393379
-
[1]
-
-
-
[1]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[2]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[3]
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
-
[4]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[5]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[8]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[9]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[10]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[11]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[12]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[13]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[14]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[15]
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
-
[16]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[17]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[18]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[19]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068
-
[20]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[1]
Metrics
- PDF Downloads(1527)
- Abstract views(1534)
- HTML views(56)