Citation: LI Jing, ZHANG Mei-Yi, PAN Gang, CHEN Hao. Influence of Adsorption Mode on Metastable-Equilibrium Adsorption of As(V) on TiO2 Particles[J]. Acta Physico-Chimica Sinica, ;2013, 29(07): 1541-1549. doi: 10.3866/PKU.WHXB201304242 shu

Influence of Adsorption Mode on Metastable-Equilibrium Adsorption of As(V) on TiO2 Particles

  • Received Date: 21 January 2013
    Available Online: 24 April 2013

    Fund Project: 国家自然科学基金(21007083, 21277161, 20537020)资助项目 (21007083, 21277161, 20537020)

  • Column and batch adsorptions of As(V) on TiO2 particles were conducted to investigate the influence of adsorption mode on metastable-equilibrium adsorption. Under the same thermodynamic conditions, a fixed amount of As(V) was added to both column and batch adsorption systems. Batch adsorption achieved equilibrium more quickly than column adsorption, and the equilibrated adsorption capacity of 0.42 mg·g-1 for the batch adsorption system was considerably greater than 0.25 mg·g-1 determined for the column adsorption system. Moreover, the adsorption irreversibility of the batch adsorption system was weaker than that of the column adsorption system. This indicated that the change of adsorption reaction mode (i.e., kinetic processes) could result in different metastable-equilibrium adsorption states under the same thermodynamic conditions. The discrepancy of adsorption behavior between column and batch adsorption systems should be caused by their different liquid film diffusion coefficients and total mass transfer coefficients, as well as different microscopic metastable-equilibrium adsorption states.

  • 加载中
    1. [1]

      (1) Yuan, T.; Luo, Q. F. Environ. Sci. 2001, 22, 25. [袁涛, 罗启芳. 环境科学, 2001, 22, 25.]

    2. [2]

      (2) Tang,W. S.; Li, Q.; Gao, S. A.; Shang, J. K. J. Hazard. Mater.2011, 192, 131.

    3. [3]

      (3) Kim, M. S.; Chung, J. G. J. Colloid Interface Sci. 2001, 233,31. doi: 10.1006/jcis.2000.7225

    4. [4]

      (4) Baker, H. M.; Massadeh, A. M.; Younes, H. A. Environ. Monit. Assess. 2008, 157, 319.

    5. [5]

      (5) Gupta, V. K.; Gupta, M.; Sharma, S. Water Res. 2001, 35, 1125.doi: 10.1016/S0043-1354(00)00389-4

    6. [6]

      (6) Westerhoff, P.; Highfield, D.; Badruzzaman, M.; Yoon, Y. J.Environ. Eng.-ASCE 2005, 131, 262. doi: 10.1061/(ASCE)0733-9372(2005)131:2(262)

    7. [7]

      (7) Nagy, M. Langmuir 1994, 10, 563. doi: 10.1021/la00014a037

    8. [8]

      (8) Meszaros, R.; Nagy, M.; Varga, I.; Laszlo, K. Langmuir 1999,15, 1307. doi: 10.1021/la980849h

    9. [9]

      (9) Zhang, M. Y. Study on Initial Concentration Effect of ArsenateAdsorption on TiO2 Surfaces. Ph. D. Dissertation, ResearchCentre for Eco-Environmental Sciences, Chinese Academy ofSciences, Beijing, 2009. [张美一. As(V)在TiO2 颗粒上吸附的初始浓度效应研究[D]. 北京: 中国科学院生态环境研究中心, 2009.]

    10. [10]

      (10) Pan, G.; Liss, P. S. J. Colloid Interface Sci. 1998, 201, 77. doi: 10.1006/jcis.1998.5397

    11. [11]

      (11) Ma, Z. C.; Pan, G.;Wei, Y.; Chen, H. Chem. J. Chin. Univ.2005, 26, 476. [马子川, 潘纲, 魏雨, 陈灏. 高等学校化学学报, 2005, 26, 476.]

    12. [12]

      (12) Pan, G. Acta Sci. Circum. 2003, 23, 156. [潘纲. 环境科学学报, 2003, 23, 156]

    13. [13]

      (13) Li, J.; Chen, H.; Pan, G.; Gao, M. Y. Acta Sci. Circum. 2006, 26,1606. [李晋, 陈灏, 潘纲, 高美媛. 环境科学学报,2006, 26, 1606.]

    14. [14]

      (14) He, G. Z.; Pan, G.; Zhang, M. Y.;Wu, Z. Y. J. Phys. Chem. C2009, 113, 17076. doi: 10.1021/jp9044918

    15. [15]

      (15) Pan, G.; He, G. Z. Physics 2009, 38, 496. [潘纲, 何广智.物理, 2009, 38, 496.]

    16. [16]

      (16) el, J.; Kadirvelu, K.; Raja pal, C.; Garg, V. K. J. Hazard. Mater. 2005, 125, 211. doi: 10.1016/j.jhazmat.2005.05.032

    17. [17]

      (17) Miller, S. M.; Spaulding, M. L.; Zimmerman, J. B. Water Res.2011, 45, 5745. doi: 10.1016/j.watres.2011.08.040

    18. [18]

      (18) Chadwick, M. D.; odwin, J.W.; Lawson, E. J.; Mills, P. D.A.; Vincent, B. Colloids Surf. A: Physicochem. Eng. Aspects2002, 203, 229. doi: 10.1016/S0927-7757(01)01101-3

    19. [19]

      (19) Gulledge, J. H.; O'Connor, J. T. J. Am. Water Works Ass. 1973,8, 548.

    20. [20]

      (20) Morterra, C. J. Chem. Soc. Faraday Trans. I 1988, 84, 1617.doi: 10.1039/f19888401617

    21. [21]

      (21) Awual, M. R.; Urata, S.; Jyo, A.; Tamada, M.; Katakai, A. Water Res. 2008, 42, 689. doi: 10.1016/j.watres.2007.08.020

    22. [22]

      (22) Vinodhini, V.; Das, N. Desalination 2010, 264, 9. doi: 10.1016/j.desal.2010.06.073

    23. [23]

      (23) Han, R. P.; Zou, L. N.; Zhao, X.; Xu, Y. F.; Xu, F.; Li, Y. L.;Wang, Y. Chem. Eng. J. 2009, 149, 123. doi: 10.1016/j.cej.2008.10.015

    24. [24]

      (24) Chen, S. H.; Yue, Q. Y.; Gao, B. Y.; Li, Q.; Xu, X.; Fu, K. F.Bioresour. Technol. 2011, 113, 114.

    25. [25]

      (25) Baral, S. S.; Das, N.; Ramulu, T. S.; Sahoo, S. K.; Das, S. N.;Chaudhury, G. R. J. Hazard. Mater. 2009, 161, 1427. doi: 10.1016/j.jhazmat.2008.04.127

    26. [26]

      (26) Klaus, P. R.; Amita, J.; Richard, H. L. Environ. Sci. Technol.1998, 32, 344. doi: 10.1021/es970421p

    27. [27]

      (27) Yan, G. Y.; Viraraghavan, T.; Chen, M. Adsorpt. Sci. Technol.2001, 19, 25. doi: 10.1260/0263617011493953

    28. [28]

      (28) Trivedi, H. C.; Patel, V. M.; Patel, R. D. Eur. Polym. J. 1973, 9,525. doi: 10.1016/0014-3057(73)90036-0

    29. [29]

      (29) Lv, L.; Zhang, Y.;Wang, K.; Ray, A. K.; Zhao, X. S. J. Colloid Interface Sci. 2008, 325, 57. doi: 10.1016/j.jcis.2008.04.067

    30. [30]

      (30) Pokhrel, D.; Viraraghavan, T. Bioresour. Technol. 2008, 99,2067. doi: 10.1016/j.biortech.2007.04.023

    31. [31]

      (31) Sontheimer, H.; Crittenden, J. C.; Summers, R. S.; Hubele, C.;Roberts, C.; Snoeyink, V. L. Activated Carbon for Water Treatment, 2nd ed.; DVGW-Forschungsstelle: Karlsruhe,Germany, 1988; pp 258-312.

    32. [32]

      (32) Wang, S.; Ma, Z. F.; Yao, H. Q. J. Chem. Eng. Chin. Univ. 2000,14, 65. [王晟, 马正飞, 姚虎卿. 高校化学工程学报, 2000,14, 65.]

    33. [33]

      (33) Kirkelund, G. M.; Ottosen, L. M.; Villumsen, A. J. Hazard. Mater. 2009, 169, 685. doi: 10.1016/j.jhazmat.2009.03.149

    34. [34]

      (34) Sanchez, F.; Garrabrants, A. C.; Vandecasteele, C.; MoszkowiczC, P.; Kosson, D. S. J. Hazard. Mater. B 2003, 96, 229. doi: 10.1016/S0304-3894(02)00215-7

    35. [35]

      (35) Badruzzaman, M.;Westerhoff, P.; Knappe, D. R. Water Res.2004, 38, 4002. doi: 10.1016/j.watres.2004.07.007

    36. [36]

      (36) Zhang, M. Y.; He, G. Z.; Pan, G. J. Colloid Interface Sci. 2009,338, 284.

    37. [37]

      (37) He, G. Z.; Pan, G.; Zhang, M. Y. J. Colloid Interface Sci. 2011,364, 476. doi: 10.1016/j.jcis.2011.08.040

    38. [38]

      (38) Zhang, M. Y.; He, G. Z.; Ding, C. C.; Chen, H.; Pan, G. Acta Phys. -Chim. Sin. 2009, 25, 2034. [张美一, 何广智, 丁程程,陈灏, 潘纲. 物理化学学报, 2009, 25, 2034.] doi: 10.3866/PKU.WHXB20090911


  • 加载中
    1. [1]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    10. [10]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    11. [11]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    14. [14]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    15. [15]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    16. [16]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    17. [17]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    18. [18]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Suqing Shi Anyang Li Yuan He Jianli Li Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009

Metrics
  • PDF Downloads(550)
  • Abstract views(854)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return