Citation:
WEI Mei-Ju, JIA De-Qiang, CHEN Fei-Wu. Geometric Structures, Excitation Energies and Dipole Moments of the Ground and Excited States of TiO2[J]. Acta Physico-Chimica Sinica,
;2013, 29(07): 1441-1452.
doi:
10.3866/PKU.WHXB201304221
-
The geometries of the ground and excited states of titanium dioxide, 1A1, 1B2, 3B2, 1B1, 3B1, 1A2 and 3A2, have been optimized using Møller-Plesset second-order perturbation theory, density functional theory B3LYP, and time-dependent density functional theory TD-B3LYP methods. 1A1, 1B2, 3B2, 1B1 and 3B1 have bent structures, while 1A2 and 3A2 have symmetrical linear structures. The bond angles of 1B2, 3B2, 1B1 and 3B1 correlate directly with the magnitudes of the corresponding bond dipole moments. Vertical and adiabatic excitation energies have been computed with complete active space self-consistent field (CASSCF) CASSCF(6,6), CASSCF(8,8), multi-reference configuration interaction (MRCI), and TD-B3LYP. For 1B2、3B2 and 1B1, the excitation energies calculated with MRCI/CASSCF(6,6) are much closer to the experimental values than the results calculated using other methods. For excited states 3B1, 1A2 and 3A2, excitation energies calculated with CASSCF(6,6), CASSCF(8,8), MRCI, and TD-B3LYP are almost consistent with theoretical results available in the literature. Dipole moments of the ground and excited states have been computed with B3LYP and TD-B3LYP. The calculated dipole moments of 1A1 and 1B2 agree well with experimental data. The atomic charges of TiO2 in ground and excited states have been calculated with the atomic dipole moment corrected Hirshfeld population method. This calculation revealed that changes of dipole moments from the ground state to the excited states are related to electron transfer from the oxygen atom to the titanium atom. During the above calculations, the influences of the basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ were also investigated.
-
-
-
[1]
(1) Fujishima, A; Honda, K. Nature 1972, 37, 238.
-
[2]
(2) Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535
-
[3]
(3) Kubacka, A.; Fernández-García, M.; Colón, G. Chem. Rev.2012, 112, 1555. doi: 10.1021/cr100454n
-
[4]
(4) Youngblood,W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E.Accounts Chem. Res. 2009, 42 (12), 1966. doi: 10.1021/ar9002398
-
[5]
(5) Qian, D. F.; Zhang, Q. H.;Wan, J.; Li, Y. G.;Wang, H. Z. Acta Phys. -Chim. Sin. 2010, 26 (10), 2745. [钱迪峰, 张青红,万钧, 李耀刚, 王宏志. 物理化学学报, 2010, 26 (10), 2745.]doi: 10.3866/PKU.WHXB20100948
-
[6]
(6) Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Chem. Rev. 2012,112, 5919. doi: 10.1021/cr3002092
-
[7]
(7) Shen,W. R.; Zhao,W. K.; He, F.; Fang, Y. L. Progress in Chemistry 1998, 10 (4), 349. [沈伟韧, 赵文宽, 贺飞, 方佑龄. 化学进展, 1998, 10 (4), 349.]
-
[8]
(8) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428. doi: 10.1021/cr050172k
-
[9]
(9) Yan, B. X.; Luo, S. Y.; Shen, J. Acta Phys. -Chim. Sin. 2012, 28 (2), 381. [颜秉熙, 罗胜耘, 沈杰. 物理化学学报, 2012, 28 (2), 381.] doi: 10.3866/PKU.WHXB201112123
-
[10]
(10) Grein, F. J. Chem. Phys. 2007, 126, 034313. doi: 10.1063/1.2429062
-
[11]
(11) Taylor, D. J.; Paterson, M. J. J. Chem. Phys. 2010, 133, 204302.doi: 10.1063/1.3515477
-
[12]
(12) Kaufman, M.; Muenter, J.; Klemperer,W. J. Chem. Phys. 1965,47, 3365.
-
[13]
(13) McIntyre, N. S.; Thompson, K. R.;Weltner,W. J. Phys. Chem.1971, 75, 3243.
-
[14]
(14) Chertihin, G. V.; Andrews, L. J. Phys. Chem. 1995, 99, 6356.doi: 10.1021/j100017a015
-
[15]
(15) Brünken, S.; Müller, H. S. P.; Menten, K. M.; McCarthy, M. C.;Thaddeus, P. A. Astrophys. J. 2008, 676, 1367. doi: 10.1086/523316
-
[16]
(16) Wang, H.; Steimle, T. C.; Apetrei, C.; Maier, J. P. Phys. Chem. Chem. Phys. 2009, 11, 2649. doi: 10.1039/b821849h
-
[17]
(17) Zhuang, X.; Le, A.; Steimle, T. C.; Nagarajan, R.; Gupta, V.;Maier, J. P. Phys. Chem. Chem. Phys. 2010, 12, 15018. doi: 10.1039/c0cp00861c
-
[18]
(18) Wu, H.;Wang, L. S. J. Chem. Phys. 1997, 107, 8221. doi: 10.1063/1.475026
-
[19]
(19) Garkusha, I.; Nagy, A.; Guennoun, Z.; Maier, J. P. Chem. Phys.2008, 353, 115. doi: 10.1016/j.chemphys.2008.08.003
-
[20]
(20) Ramana, M. V.; Phillips, D. H. J. Chem. Phys. 1988, 88, 2637.doi: 10.1063/1.454716
-
[21]
(21) Hagfeldt, A.; Bergström, R.; Siegbahn, H. O. G.; Lunell, S.J. Phys. Chem. 1993, 97, 12725. doi: 10.1021/j100151a016
-
[22]
(22) Bergström, R.; Lunell, S.; Eriksson, L. A. Int. J. Quantum Chem. 1996, 59, 427.
-
[23]
(23) Walsh, M. B.; King, R.; Schaefer, H. F. J. Chem. Phys. 1999,110, 5224. doi: 10.1063/1.478418
-
[24]
(24) Albaret, T.; Finocchi, F.; Noguera, C. J. Chem. Phys. 2000, 113,2238. doi: 10.1063/1.482038
-
[25]
(25) Qu, Z.W.; Kroes, G. J. J. Phys. Chem. B 2006, 110, 8998. doi: 10.1021/jp056607p
-
[26]
(26) Li, S.; Dixon, D. A. J. Phys. Chem. A 2008, 112, 6646. doi: 10.1021/jp800170q
-
[27]
(27) Liu, Y.; Yuan, Y.;Wang, Z.; Deng, K.; Xiao, C.; Li, Q. J. Chem. Phys. 2009, 130, 174308. doi: 10.1063/1.3126776
-
[28]
(28) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1993, 98, 1358.doi: 10.1063/1.464303
-
[29]
(29) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys.1992, 96, 6796. doi: 10.1063/1.462569
-
[30]
(30) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
-
[31]
(31) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. doi: 10.1103/PhysRev.46.618
-
[32]
(32) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
-
[33]
(33) Lee, C.; Yang,W.; Parr, G. R. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
-
[34]
(34) Zhao, G. J.; Han, K. L. Accounts Chem. Res. 2012, 45, 404. doi: 10.1021/ar200135h
-
[35]
(35) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.1998, 109, 8218. doi: 10.1063/1.477483
-
[36]
(36) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256,454. doi: 10.1016/0009-2614(96)00440-X
-
[37]
(37) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R.J. Chem. Phys. 1998, 108, 4439. doi: 10.1063/1.475855
-
[38]
(38) Foresman, J. B.; Head- rdon, M.; Pople, J. A.; Frisch, M. J.J. Phys. Chem.1992, 96, 135. doi: 10.1021/j100180a030
-
[39]
(39) Hegarty, D.; Robb, M. A. Mol. Phys. 1979, 38, 1795. doi: 10.1080/00268977900102871
-
[40]
(40) Yamamoto, N.; Vreven, T.; Robb, M. A.; Frisch, M. J.; Schlegel,H. B. Chem. Phys. Lett. 1996, 250, 373. doi: 10.1016/0009-2614(96)00027-9M
-
[41]
(41) Werner, H. J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803.doi: 10.1063/1.455556
-
[42]
(42) Knowles, P. J.;Werner, H. J. Chem. Phys. Lett. 1988, 145, 514.doi: 10.1016/0009-2614(88)87412-8
-
[43]
(43) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03 W, Revision D.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[44]
(44) Wemer, H. J.; Knowles, P. J.; Lindh, R.; MAnby, F. R.; Schütz,M. et al. Molpro, 2009.1; a Package of ab initio Programs. seehttp://www.molpro.net.
-
[45]
(45) Lu, T.; Chen, F.W. J. Thero. Comput. Chem. 2012, 11 (1), 163.doi: 10.1142/S0219633612500113
-
[46]
(46) Lu, T.; Chen, F.W. Acta Phys. -Chim. Sin. 2012, 28 (1), 1.[卢天, 陈飞武. 物理化学学报, 2012, 28 (1), 1.] doi: 10.1142/10.3866/PKU.WHXB2012281
-
[47]
(47) Lu, T.; Chen, F.W. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.v33.5
-
[48]
(48) http://Multiwfn.codeplex.com.
-
[1]
-
-
-
[1]
Liuxie Liu , Jing He , Jiali Du , Shuang Mao , Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108
-
[2]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[3]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[4]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[5]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[6]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[7]
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027
-
[8]
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
-
[9]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[10]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[11]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[12]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[13]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[14]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[15]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[16]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[17]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[18]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[19]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[20]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[1]
Metrics
- PDF Downloads(754)
- Abstract views(1127)
- HTML views(76)