Citation: ZHANG Li, CHEN Lang, WANG Chen, WU Jun-Ying. Molecular Dynamics Study of the Effect of H2O on the Thermal Decomposition of α Phase CL-20[J]. Acta Physico-Chimica Sinica, ;2013, 29(06): 1145-1153. doi: 10.3866/PKU.WHXB201303221 shu

Molecular Dynamics Study of the Effect of H2O on the Thermal Decomposition of α Phase CL-20

  • Received Date: 31 January 2013
    Available Online: 22 March 2013

  • The response of the mechanisms of the α polymorph of CL-20 (α-CL-20) to high temperature is important for understanding the phenomenon of shock initiation, shock ignition, and detonation. The thermal decomposition of α-CL-20 hydrate and pure α-CL-20 were studied by ReaxFF reactive molecular dynamics simulations to obtain the time evolution of water molecules and the effect of H2O on the mechanisms of CL-20 at high temperatures. It was determined that the initial decomposition mechanisms of CL-20 are not dependent on the presence of water, but the secondary reaction pathways are. At low temperatures (T<1500 K), there is no relationship between the H2O, hydrate CL-20, and pure CL-20 systems, as the mechanism is only the dissociation of the N―NO2 bond to form the NO2 radical. At high temperatures (1500 K≤T≤2500 K), water molecules act as a reactant or form catalytic systems with NO2 radical to form OH radical, leading to the formation of O2, H2O2, and other products. Water molecules accelerate the secondary stage reaction of hydrate systems, leading to increased secondary reaction rates and number of NO2 radicals in the CL-20 hydrate compared with the pure CL-20 system. At very high temperatures (T>2500 K), the dissociation of water molecules competes with the initial thermal decomposition pathway of CL-20, leading to a larger rate constant for the pure CL-20 than for the hydrate CL-20.

  • 加载中
    1. [1]

      (1) Nielsen, A. T.; Chafun, A. P.; Christian, S. L.; Moore, D.W.;Nadler, M. P.; Nissan, R. A.; Vanderah, D. J.; Gilardi, R. D.;George, C. F.; Flippen, J. L. Tetrahedron 1998, 54, 11793.

    2. [2]

      (2) Li, J.; Brill, T. B. Propellants, Explosive, Pyrotechnics 2007, 32,326.

    3. [3]

      (3) Tappan, B.; Brill, T. B. Propellants, Explosives, Pyrotechnics2003, 28, 223.

    4. [4]

      (4) Simpson, R. L.; Urtiev, P. A.; Ornellas, D. L.; Moody, G. L.;Scribner, K. J.; Hoffman, D. M. Propellant, Explosives,Pyrotechnics 1997, 22, 249.

    5. [5]

      (5) Okovytyy, S.; Kholod, Y.; Qasim, M.; Fredrickson, H.;Leszczynski, J. J. Phys. Chem. A 2005, 109, 2964. doi: 10.1021/jp045292v

    6. [6]

      (6) Isayev, O.; rb, L.; Qasim, M.; Leszczynski, J. J. Phys. Chem.B 2008, 112, 11005. doi: 10.1021/jp804765m

    7. [7]

      (7) Zhang, L.; Chen, L.;Wang, C.;Wu, J. Y. Chinese Journal ofExplosives & Propellants 2012, 35 (4), 5. [张力, 陈朗,王晨, 伍俊英. 火炸药学报, 2012, 35 (4), 5.]

    8. [8]

      (8) van Duin, A. C. T.; Dasgupta, S.; Lorant, F. J. Phys. Chem. A2001, 105, 9396. doi: 10.1021/jp004368u

    9. [9]

      (9) Han, S.; van Duin, A. C. T.; ddard,W. A., III; Strachan, A.J. Phys. Chem. B 2011, 115, 6534. doi: 10.1021/jp1104054

    10. [10]

      (10) Rom, N.; Zybin, S. V.; van Duin, A. C. T.; ddard,W. A., III;Zeiri, Y.; Katz, G.; Kosloff, R. J. Phys. Chem. A 2011, 115,10181. doi: 10.1021/jp202059v

    11. [11]

      (11) Guo, F.; Cheng, X.; Zhang, H. J. Phys. Chem. A 2012, 116,3514. doi: 10.1021/jp211914e

    12. [12]

      (12) Strachan, A.; van Duin, A. C. T.; Chakraborty, D.; Dasgupta, S.; ddard,W. A., III. Phys. Rev. Lett. 2003, 91 (9), 098301. doi: 10.1103/PhysRevLett.91.098301

    13. [13]

      (13) Strachan, A.; Kober, E.; van Duin, A. C. T.; Oxgaard, J.; ddard,W. A., III. J. Chem. Phys. 2005, 122, 54502.

    14. [14]

      (14) Zhang, L. Z.; Zybin, S. V.; van Duin, A. C. T.; Dasgupta, S.; ddard,W. A., III. J. Phys. Chem. A 2009, 113, 10619. doi: 10.1021/jp901353a

    15. [15]

      (15) Zhou, T. T.; Shi, Y. D.; Huang, F. L. Acta Phys. -Chim. Sin.2012, 28 (11), 2605. [周婷婷, 石一丁, 黄风雷. 物理化学学报, 2012, 28 (11), 2605.] doi: 10.3866/PKU.WHXB201208031

    16. [16]

      (16) Zhou, T.; Huang, F. L. J. Phys. Chem. B 2011, 115, 278. doi: 10.1021/jp105805w

    17. [17]

      (17) Budzine, J.; Thompson, A. P.; Zybin, S. V. J. Phys. Chem. B2009, 113, 13142. doi: 10.1021/jp9016695

    18. [18]

      (18) Fu, X. C.; Shen,W. X.; Yao, T. Y.; Hou,W. H. PhysicalChemistry, 5th ed.; Higher Education Press: Beijing, 2007; pp154-484. [傅献彩, 沈文霞, 姚天扬, 侯文华. 物理化学. 第五版. 北京: 高等教育出版社, 2007: 154-484.]

    19. [19]

      (19) Patil, D. G.; Brill, T. B. Combust. Flame 1991, 87, 145. doi: 10.1016/0010-2180(91)90164-7

    20. [20]

      (20) Pace, M. D. J. Phys. Chem. 1991, 95, 5858. doi: 10.1021/j100168a028

    21. [21]

      (21) Dong, L. M.; Li, X. D.; Yang, R. J. Acta Phys. -Chim. Sin. 2008,24 (6), 997. [董林茂, 李晓东, 杨荣杰. 物理化学学报, 2008,24 (6), 997.] doi: 10.3866/PKU.WHXB20080614

    22. [22]

      (22) Nedelko, V. V.; Chukanov, N. V.; Raevski, A. V.; Korsounskii,B. L.; Larikova, T. S.; Kolesova, O. I.; Volk, F. Propellants,Explosives, Pyrotechnics 2000, 5, 255.

    23. [23]

      (23) Shimojo, F.; Ohmura, S.; Kalia, R. K.; Nakano, A.; Vashishta, P.Phys. Rev. Lett. 2010, 104 (12), 126102. doi: 10.1103/PhysRevLett.104.126102

    24. [24]

      (24) Ohmura, S.; Shimojo, F.; Kalia, R. K.; Kunaseth, M.; Nakano,A.; Vashishta, P. J. Chem. Phys. 2011, 134, 244702. doi: 10.1063/1.3602326

    25. [25]

      (25) Wu, J. C.; Fried, L. E.; Yang, L. H; ldman, N.; Baste, S.Nature Chemistry 2009, 1, 57. doi: 10.1038/nchem.130

    26. [26]

      (26) Chang, J.; Lian, P.;Wei, D. Q.; Chen, X. R.; Zhang, Q. M.; ng, Z. Z. Phys. Rev. Lett. 2010, 105 (18), 188302. doi: 10.1103/PhysRevLett.105.188302


  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    4. [4]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    5. [5]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    6. [6]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    8. [8]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    13. [13]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    19. [19]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    20. [20]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

Metrics
  • PDF Downloads(818)
  • Abstract views(1139)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return