Citation:
WU Hong-Bin, ZHANG Ying, YUAN Cong-Li, WEI Xiao-Pei, YIN Jin-Ling, WANG Gui-Ling, CAO Dian-Xue, ZHANG Yi-Ming, YANG Bao-Feng, SHE Pei-liang. Synthesis and Electrochemical Performance of Li4Ti5O12/CMK-3 Nanocomposite Negative Electrode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica,
;2013, 29(06): 1247-1252.
doi:
10.3866/PKU.WHXB201303211
-
The composite of ordered mesoporous carbon (CMK-3) and Li4Ti5O12 (Li4Ti5O12/CMK-3) was prepared by the wet impregnation of CMK-3 with LiNO3 and Ti(OC4H9)4 solution followed by calcination. Its morphology and structure were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The content of Li4Ti5O12 in the mesoporous nanocomposite was determined by thermogravimetric analysis. Its electrochemical performance as the negative electrode material of lithium-ion batteries was investigated by galvanostatic charge-discharge tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that Li4Ti5O12 is formed inside the mesopore channels of CMK-3 and some particles are located on the surface of CMK-3. The composite shows significantly greater high-rate performance than commercial Li4Ti5O12. The specific capacity of Li4Ti5O12 in the composite is higher than Li4Ti5O12 without CMK-3 (117.8 mAh·g-1 at 1C rate), and its stabilized specific capacity reached 160, 143, and 131 mAh·g-1 at 0.5C, 1C, and 5C charge-discharge rates, respectively, with a columbic efficiency of nearly 100%. The capacity loss after 100 cycles at 5C rate was less than 0.62%. This result clearly indicates that CMK-3 improves the high rate performance of Li4Ti5O12, likely by reducing the particle size of Li4Ti5O12 and increasing its electronic conductivity owing to the unique structure and od electronic conduction nature of CMK-3.
-
-
-
[1]
(1) Xiang, H. F.; Zhang, X.; Jin, Q. Y.; Zhang, C. P.; Chen, C. H.;Ge, X.W. J. Power Sources 2008, 183, 355. doi: 10.1016/j.jpowsour.2008.04.091
-
[2]
(2) Koga, C.;Wada, S.; Nakayama, M. Electrochim. Acta 2010, 55,2561. doi: 10.1016/j.electacta.2009.12.034
-
[3]
(3) Dedryvère, R.; Foix, D.; Franger, S.; Patoux, S.; Daniel, L.; nbeau, D. J. Phys. Chem. C 2010, 14, 10999.
-
[4]
(4) Capsoni, D.; Bini, M.; Massarotti, V.; Mustarelli, P.; Ferrari, S.;Chiodelli, G.; Mozzati, M. C.; Galinetto, P. J. Phys. Chem. C2009, 113, 19664. doi: 10.1021/jp906894v
-
[5]
(5) Lee, S. C.; Lee, S. M.; Lee, J.W.; Lee, J. B.; Lee, S. M.; Han, S.S.; Lee, H. C.; Kim, H. J. J. Phys. Chem. C 2009, 113, 18420.doi: 10.1021/jp905114c
-
[6]
(6) Yoshikawa, D.; Kadoma, Y.; Kim, J. M.; Ui, K.; Kumagai, N.;Kitamura, N.; Idemoto Y. Electrochim. Acta 2010, 55, 1872.doi: 10.1016/j.electacta.2009.10.082
-
[7]
(7) Rahman, M. M.;Wang, J. Z.; Hassan, M. F.; Chou, S.;Wexler,D.; Liu, H. K. J. Power Sources 2010, 195, 4297. doi: 10.1016/j.jpowsour.2010.01.073
-
[8]
(8) Stournara, M. E.; Shenoy, V. B. J. Power Sources 2011, 196,5697. doi: 10.1016/j.jpowsour.2011.02.024
-
[9]
(9) Ju, S. H.; Kang, Y. C. J. Power Sources 2009, 189, 185.doi: 10.1016/j.jpowsour.2008.09.107
-
[10]
(10) Prakash, A. S.; Manikandan, P.; Ramesha, K.; Sathiya, M.;Tarascon, J. M.; Shukla, A. K. Chem. Mater. 2010, 22, 2857.doi: 10.1021/cm100071z
-
[11]
(11) Huang, S.;Wen, Z.; Zhu, X.; Lin, Z. J. Power Sources 2007,165, 408. doi: 10.1016/j.jpowsour.2006.12.010
-
[12]
(12) Deng, J.; Lu, Z.; Belharouak, I.; Amine, K.; Chung, C. Y.J. Power Sources 2009, 193, 816. doi: 10.1016/j.jpowsour.2009.03.074
-
[13]
(13) He, Y. B.; Ning, F.; Li, B.; Song, Q. S.; Lv,W.; Du, H.; Zhai, D.;Su, F.; Yang, Q. H.; Kang, F. J. Power Sources 2012, 202, 253.doi: 10.1016/j.jpowsour.2011.11.037
-
[14]
(14) Yuan, T.; Yu, X.; Cai, R.; Zhou, Y.; Shao, Z. J. Power Sources2010, 195, 4997. doi: 10.1016/j.jpowsour.2010.02.020
-
[15]
(15) Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.;Wu,Y. P.; Takamura,T. J. Power Sources 2007, 174, 1109. doi: 10.1016/j.jpowsour.2007.06.107
-
[16]
(16) Lin, Z.; Hu, X.; Huai, Y.; Liu, L.; Deng, Z.; Suo, J. Solid State Ionics 2010, 181, 412. doi: 10.1016/j.ssi.2010.01.019
-
[17]
(17) Yuan, T.; Cai, R.; Ran, R.; Zhou, Y.; Shao, Z. J. Alloy. Compd.2010, 505, 367. doi: 10.1016/j.jallcom.2010.04.253
-
[18]
(18) Jhan, Y. R.; Lin, C. Y.; Duh, J. G. Mater. Lett. 2011, 65, 2502.doi: 10.1016/j.matlet.2011.04.060
-
[19]
(19) Yi, T. F.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhu, R. S.; Qiao, H. B.J. Phys. Chem. Solids 2010, 71, 1236. doi: 10.1016/j.jpcs.2010.05.001
-
[20]
(20) Venkateswarlu, M.; Chen, C. H.; Do, J. S.; Lin, C.W.; Chou, T.C.; Hwang, B. J. J. Power Sources 2005, 146, 204. doi: 10.1016/j.jpowsour.2005.03.016
-
[21]
(21) Jung, H. G.; Kim, J.; Scrosati, B.; Sun, Y. K. J. Power Sources2011, 196, 7763. doi: 10.1016/j.jpowsour.2011.04.019
-
[22]
(22) Su, L.W.; Jing, Y.; Zhou, Z. Nanoscale 2011, 3, 3967.doi: 10.1039/c1nr10550g
-
[23]
(23) Wang, G.; Liu, H.; Liu, J.; Qiao, S.; Lu, G. M.; Munroe, P.; Ahn,H. Adv. Mater. 2010, 22, 4944. doi: 10.1002/adma.v22.44
-
[24]
(24) Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater 2009, 8, 500.doi: 10.1038/nmat2460
-
[25]
(25) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.;Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.doi: 10.1021/ja002261e
-
[26]
(26) Tian, B.; Xiang, H.; Zhang, L.; Li, Z.;Wang, H. Electrochim. Acta 2010, 55, 5453. doi: 10.1016/j.electacta.2010.04.068
-
[27]
(27) Zhang, B.; Huang, Z. D.; Oh, S.W.; Kim, J. K. J. Power Sources2011, 196, 10692. doi: 10.1016/j.jpowsour.2011.08.114
-
[28]
(28) Zhou, X. L.; Huang, R. A.;Wu, Z. C.; Yang, B.; Dai, Y. N. Acta Phys. -Chim. Sin. 2010, 26 (12), 3187. [周晓玲, 黄瑞安, 吴肇聪, 杨斌, 戴永年. 物理化学学报, 2010, 26 (12), 3187.]doi: 10.3866/PKU.WHXB20101212
-
[29]
(29) He, Y. B.; Li, B. H.; Liu, M.; Zhang, C.; Lv,W.; Yang, C.; Li, J.;Du, H. D.; Zhang, B.; Yang, Q. H.; Kim, J. K.; Kang, F. Y.Scientific Reports 2012, 2, 913.
-
[1]
-
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[2]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[3]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[4]
Yihan Xue , Xue Han , Jie Zhang , Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072
-
[5]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096
-
[6]
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006
-
[7]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[8]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[9]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[10]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[11]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
-
[12]
Chenyue Huang , Hongfei Zheng , Ning Qin , Canpei Wang , Liguang Wang , Jun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051
-
[13]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[14]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[15]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[16]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028
-
[17]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007
-
[18]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[19]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[20]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[1]
Metrics
- PDF Downloads(902)
- Abstract views(1273)
- HTML views(33)