Citation:
WANG Qiang, HUANG Li-Ping, YU Hong-Tao, QUAN Xie, CHEN Guo-Hua. Recent Developments of Graphene Electrodes in Bioelectrochemical Systems[J]. Acta Physico-Chimica Sinica,
;2013, 29(05): 889-896.
doi:
10.3866/PKU.WHXB201303151
-
Sustainable societies require development of cost-effective methods for harnessing energy from wastes and wastewater, and alternatively capturing this energy to make other useful chemicals with simultaneous wastes and wastewater treatment. Recently developed bioelectrochemical systems (BESs) that use microorganisms to catalyze different electrochemical reactions are promising for capturing the energy in wastes and wastewater for diverse purposes. A BES is called a microbial fuel cell (MFC) if electricity is generated and the Gibbs free energy change of the corresponding reaction is negative. Conversely, when the Gibbs free energy change of the overall reaction is positive, power needs to be supplied to drive this non-spontaneous reaction, and this BES is regarded as a microbial electrolysis cell (MEC). The electrode character is considered to be a key factor for triggering the applicable BESs. Graphene has been recently used as the electrode and investigated in BESs because of its unique structure and excellent properties. Here, an up-to-date review is provided on the recent research and development in BES-based graphene, particularly in MFC-based graphene. The recent pristine graphene, doped graphene, and supported graphene research in MFCs is described in detail. The potential applications of graphene in MECs and the scientific and technical challenges are also discussed.
-
-
-
[1]
(1) Logan, B. E. Nat. Rev. Microbiol. 2009, 7 (5), 375. doi: 10.1038/nrmicro2113
-
[2]
(2) Logan, B. E. Appl. Microbiol. Biotechnol. 2010, 85 (6), 1665.doi: 10.1007/s00253-009-2378-9
-
[3]
(3) Logan, B. E.; Rabaey, K. Science 2012, 337 (6095), 686. doi: 10.1126/science.1217412
-
[4]
(4) Wei, J.; Liang, P.; Huang, X. Bioresour. Technol. 2011, 102 (20),9335. doi: 10.1016/j.biortech.2011.07.019
-
[5]
(5) Zhou, M. H.; Chi, M. C.; Luo, J. M.; He, H. H.; Jin, T. J. PowerSources 2011, 196 (10), 4427. doi: 10.1016/j.jpowsour.2011.01.012
-
[6]
(6) Jiang, L. L.; Lu, X. J. Funct. Mater. 2012, 23 (43), 2881. [姜丽丽, 鲁雄. 功能材料, 2012, 23 (43), 2881.]
-
[7]
(7) Sun, Y. Q.;Wu, Q.; Shi, G. Q. Energy Environ. Sci. 2011, 4 (4),1113. doi: 10.1039/c0ee00683a
-
[8]
(8) Wang, H.; Hu, Y. H. Energy Environ. Sci. 2012, 5 (8), 8182. doi: 10.1039/c2ee21905k
-
[9]
(9) Huang, C. C.; Li, C. H.; Shi, G. Q. Energy Environ. Sci. 2012, 5 (10), 8848. doi: 10.1039/c2ee22238h
-
[10]
(10) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. ActaPhys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2012, 26 (8), 2073.] doi: 10.3866/PKU.WHXB20100812
-
[11]
(11) Wu, J. J.;Wang, Y.; Zhang, D.; Hou, B. R. J. Power Sources2011, 196 (3), 1141. doi: 10.1016/j.jpowsour.2010.07.087
-
[12]
(12) Xiao, L.; Damien, J.; Luo, J. Y.; Jang, H. D.; Huang, J. X.; He,Z. J. Power Sources 2012, 208 (1), 187.
-
[13]
(13) Li, S. Z.; Hu, Y. Y.; Xu, Q.; Sun, J.; Hou, B.; Zhang, Y. P.J. Power Sources 2012, 213 (1), 265.
-
[14]
(14) Zhang, Y. Z.; Mo, G. Q.; Li, X.W.; Ye, J. S. J. Power Sources2012, 197 (1), 93.
-
[15]
(15) Wen, Q.;Wang, S. Y.; Yan, J.; Cong, L. J.; Pan, Z. C.; Ren, Y.M.; Fan, Z. G. J. Power Sources 2012, 216 (1), 187.
-
[16]
(16) Ahmed, M. S.; Jeon, S. J. Power Sources 2012, 218 (1), 168.
-
[17]
(17) Liu, J.; Qiao, Y.; Guo, C. X.; Lim, S.; Song, H.; Li, C. M.Bioresour. Technol. 2012, 114 (1), 275.
-
[18]
(18) Palaniselvam, T.; Aiyappa, H. B.; Kurun t, S. J. Mater. Chem.2012, 22 (45), 23799. doi: 10.1039/c2jm35128e
-
[19]
(19) Yang, Z.; Yao, Z.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.;Chen, X. A.; Huang, S. M. J. Am. Chem. Soc. 2012, 6 (1), 205.
-
[20]
(20) Wu, J. J.; Zhang, D.;Wang, Y.;Wan, Y.; Hou, B. R. J. PowerSources 2012, 198 (1), 122.
-
[21]
(21) Shi, Y. S.; Li, X. H.; Ning, Q. J. Electron. Compon. Mater. 2010,29 (8), 70. [史永胜, 李雪红, 宁青菊. 电子元件与材料, 2010,29 (8), 70.]
-
[22]
(22) Fu, Q.; Bao, X. H. Chin. Sci. Bull. 2009, 54 (18), 2657. [傅强, 包信和. 科学通报, 2009, 54 (18), 2657.] doi: 10.1360/972009-1537
-
[23]
(23) Zhang, Y. Z.; Mo, G. Q.; Li, X.W.; Zhang,W. D.; Zhang, J. Q.;Ye, J. S.; Huang, X. D.; Yu, C. Z. J. Power Sources 2011, 196 (13), 5402. doi: 10.1016/j.jpowsour.2011.02.067
-
[24]
(24) Salas, E. C.; Sun, Z.; Luttge, A.; Tour, J. M. ACS Nano 2010, 4 (8), 4852. doi: 10.1021/nn101081t
-
[25]
(25) Wang, G. M.; Qian, F.; Saltikov, C.W.; Jiao, Y. Q.; Li, Y. NanoRes. 2011, 4, 563. doi: 10.1007/s12274-011-0112-2
-
[26]
(26) Yuan, Y.; Zhou, S. G.; Zhao, B.; Zhuang, L.;Wang, Y. Q.Bioresour. Technol. 2012, 116 (1), 453.
-
[27]
(27) Zhuang, L.; Yuan, Y.; Yang, G. Q.; Zhou, S. G. Electrochem.Commun. 2012, 21 (1), 69.
-
[28]
(28) Huang, Y. X.; Liu, X.W.; Xie, J. F.; Sheng, G. P.;Wang, G. Y.;Zhang, Y. Y.; Xu, A.W.; Yu, H, Q. Chem. Commun. 2011, 47 (20), 5795. doi: 10.1039/c1cc10159e
-
[29]
(29) Xie, X.; Yu, G. H.; Liu, Z. N.; Criddle, C. S.; Cui, Y. EnergyEnviron. Sci. 2012, 5 (5), 6862. doi: 10.1039/c2ee03583a
-
[30]
(30) Xie, P. Y.; Zhuang, G. L.; Lü, Y. A.;Wang, J. G.; Li, X. N. ActaPhys. -Chim. Sin. 2012, 28 (2), 331. [谢鹏洋, 庄桂林, 吕永安, 王建国, 李小年. 物理化学学报, 2012, 28 (2), 331.] doi: 10.3866/PKU.WHXB201111021
-
[31]
(31) Hou, J. X.; Liu, Z. L.; Zhang, P. Y. J. Power Sources 2013, 224 (1), 139.
-
[32]
(32) He, Z. M.; Liu, J.; Qiao, Y.; Li, C. M.; Tan, T. T. Y. Nano Lett.2012, 12 (9), 4738. doi: 10.1021/nl302175j
-
[33]
(33) Feng, L. Y.; Chen, Y. G.; Chen, L. ACS Nano 2011, 5 (12), 9611.doi: 10.1021/nn202906f
-
[34]
(34) Gurunathan, S.; Han, J.W.; Dayem, A. A.; Eppakayala, V.; Kim,J. N. Int. J. Nanomed. 2012, 7 (1), 5901.
-
[35]
(35) Agarwal, S.; Zhou, X. Z.; Ye, F.; He, Q. Y.; Chen, G. C. K.; Soo,J.; Boey, F.; Zhang, H.; Chen, P. Langmuir 2010, 26 (4), 2244.doi: 10.1021/la9048743
-
[36]
(36) Jain, A.; Zhang, X. M.; Pastorella, G.; Connolly, J. O.; Barry,N.;Woolley, R.; Krishnamurthy, S.; Marsili, E.Bioelectrochemistry 2012, 87 (Suppl. 1), 28.
-
[37]
(37) Qiao, Y.; Bao, S. J.; Li, C. M.; Cui, X. Q.; Lu, Z. S.; Guo, J. ACSNano 2008, 2 (1), 113. doi: 10.1021/nn700102s
-
[38]
(38) Zuo, X.; He, S.; Li, D.; Peng, C.; Huang, Q.; Song, S.; Fan, C.Langmuir 2010, 26 (3), 1936. doi: 10.1021/la902496u
-
[39]
(39) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin.2012, 28 (11), 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28 (11), 2745.] doi: 10.3866/PKU.WHXB201208221
-
[40]
(40) Lai, L. F.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C.H.; ng, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. EnergyEnviron. Sci. 2012, 5 (7), 7936. doi: 10.1039/c2ee21802j
-
[41]
(41) Liu, Q.; Zhang, H. Y.; Zhong, H.W.; Zhang, S. M.; Chen, S. L.Electrochim. Acta 2012, 81 (1), 313.
-
[42]
(42) Wen, Q.; Liu, Z. M.; Chen, Y.; Li, K. F.; Zhu, N. Z. ActaPhys. -Chim. Sin. 2008, 24 (6), 1063. [温青, 刘智敏,陈野, 李凯峰, 朱宁正. 物理化学学报, 2008, 24 (6), 1063.]doi: 10.3866/PKU.WHXB20080626
-
[43]
(43) Wang,W. L.; Ma, Z. F. Acta Phys. -Chim. Sin. 2012, 28 (12),2879. [王万丽, 马紫峰. 物理化学学报, 2012, 28 (12), 2879.]doi: 10.3866/PKU.WHXB201209252
-
[44]
(44) Zhang, L. X.; Liu, C. S.; Zhuang, L.; Li,W. S.; Zhou, S. G.Biosens. Bioelectron. 2009, 24 (9), 2825. doi: 10.1016/j.bios.2009.02.010
-
[45]
(45) Liang, Y. Y.; Li, Y. G.;Wang, H. L.; Zhou, J. G.;Wang, J.;Regier, T.; Dai, H. J. Nat. Mater. 2011, 10 (10), 780. doi: 10.1038/nmat3087
-
[46]
(46) Yong, Y. C.; Dong, X. C.; Mary, B. C. P.; Song, H.; Chen, P.ACS Nano 2012, 6 (3), 2394. doi: 10.1021/nn204656d
-
[47]
(47) Pirbadian, S.; EI-Naggar, M. Y. Phys. Chem. Chem. Phys. 2012,14 (40), 13802. doi: 10.1039/c2cp41185g
-
[48]
(48) Cheng, J. S.; Du, J.; Zhu,W. J. Carbohyd. Polym. 2012, 88 (1),61. doi: 10.1016/j.carbpol.2011.11.065
-
[49]
(49) Huang, L. P.; Regan, J. M.; Quan, X. Bioresour. Technol. 2011,102 (1), 316. doi: 10.1016/j.biortech.2010.06.096
-
[50]
(50) Liu, H.; Grot, S.; Logan, B. E. Environ. Sci. Technol. 2005, 39 (11), 4317. doi: 10.1021/es050244p
-
[51]
(51) Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J.W.; Metz,S. J.; Buisman, C. J. N. Int. J. Hydrog. Energy 2006, 31 (12),1632. doi: 10.1016/j.ijhydene.2005.12.006
-
[52]
(52) Logan, B. E.; Call, D.; Cheng, S.; Hamelers, H. V. M.; Sleutels,T. J. A.; Jeremiasse, A.W.; Rozendal, R. A. Environ. Sci.Technol. 2008, 42 (23), 8630. doi: 10.1021/es801553z
-
[53]
(53) Wang, L. Y.; Chen, Y. G.; Huang, Q.; Feng, Y. Y.; Zhu, S. M.;Shen, S. B. J. Chem. Technol. Biotechnol. 2012, 87 (8), 1150.doi: 10.1002/jctb.v87.8
-
[54]
(54) Zhang, Y. M.; Merrill, M. D.; Logan, B. E. Int. J. Hydrog.Energy 2010, 35 (21), 12020. doi: 10.1016/j.ijhydene.2010.08.064
-
[55]
(55) Selembo, P. A.; Merrill, M. D.; Logan, B. E. Int. J. Hydrog.Energy 2010, 35 (2), 428. doi: 10.1016/j.ijhydene.2009.11.014
-
[56]
(56) Hu, H.; Fan, Y.; Liu, H. Int. J. Hydrog. Energy 2010, 35 (8),3227. doi: 10.1016/j.ijhydene.2010.01.131
-
[57]
(57) Tokash, J. C.; Logan, B. E. Int. J. Hydrog. Energy 2011, 36 (16),9439. doi: 10.1016/j.ijhydene.2011.05.080
-
[58]
(58) Zhang, T.; Nie, H.; Bain, T. S.; Lu, H.; Cui, M.; Snoeyenbos-West, O. L.; Franks, A. E.; Nevin, K. P.; Russell, T. P.; Lovley,D. R. Energy Environ. Sci. 2013, 6 (1), 217. doi: 10.1039/c2ee23350a
-
[59]
(59) Logan, B. E. ChemSusChem 2012, 5 (6), 988. doi: 10.1002/cssc.v5.6
-
[1]
-
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[3]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[4]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[5]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[6]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[7]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[8]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[9]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
-
[10]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[11]
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
-
[12]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[13]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[14]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
-
[15]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046
-
[16]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[17]
Yan Xin , Yunnian Ge , Zezhong Li , Qiaobao Zhang , Huajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060
-
[18]
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
-
[19]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030
-
[20]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[1]
Metrics
- PDF Downloads(1274)
- Abstract views(2131)
- HTML views(10)