Citation: WANG Qiang, HUANG Li-Ping, YU Hong-Tao, QUAN Xie, CHEN Guo-Hua. Recent Developments of Graphene Electrodes in Bioelectrochemical Systems[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 889-896. doi: 10.3866/PKU.WHXB201303151 shu

Recent Developments of Graphene Electrodes in Bioelectrochemical Systems

  • Received Date: 14 January 2013
    Available Online: 15 March 2013

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB936002) (973) (2011CB936002) 国家自然科学基金(51178077, 21077017) (51178077, 21077017)教育部高等学校博士学科点专项科研基金(20120041110026)资助 (20120041110026)

  • Sustainable societies require development of cost-effective methods for harnessing energy from wastes and wastewater, and alternatively capturing this energy to make other useful chemicals with simultaneous wastes and wastewater treatment. Recently developed bioelectrochemical systems (BESs) that use microorganisms to catalyze different electrochemical reactions are promising for capturing the energy in wastes and wastewater for diverse purposes. A BES is called a microbial fuel cell (MFC) if electricity is generated and the Gibbs free energy change of the corresponding reaction is negative. Conversely, when the Gibbs free energy change of the overall reaction is positive, power needs to be supplied to drive this non-spontaneous reaction, and this BES is regarded as a microbial electrolysis cell (MEC). The electrode character is considered to be a key factor for triggering the applicable BESs. Graphene has been recently used as the electrode and investigated in BESs because of its unique structure and excellent properties. Here, an up-to-date review is provided on the recent research and development in BES-based graphene, particularly in MFC-based graphene. The recent pristine graphene, doped graphene, and supported graphene research in MFCs is described in detail. The potential applications of graphene in MECs and the scientific and technical challenges are also discussed.

  • 加载中
    1. [1]

      (1) Logan, B. E. Nat. Rev. Microbiol. 2009, 7 (5), 375. doi: 10.1038/nrmicro2113

    2. [2]

      (2) Logan, B. E. Appl. Microbiol. Biotechnol. 2010, 85 (6), 1665.doi: 10.1007/s00253-009-2378-9

    3. [3]

      (3) Logan, B. E.; Rabaey, K. Science 2012, 337 (6095), 686. doi: 10.1126/science.1217412

    4. [4]

      (4) Wei, J.; Liang, P.; Huang, X. Bioresour. Technol. 2011, 102 (20),9335. doi: 10.1016/j.biortech.2011.07.019

    5. [5]

      (5) Zhou, M. H.; Chi, M. C.; Luo, J. M.; He, H. H.; Jin, T. J. PowerSources 2011, 196 (10), 4427. doi: 10.1016/j.jpowsour.2011.01.012

    6. [6]

      (6) Jiang, L. L.; Lu, X. J. Funct. Mater. 2012, 23 (43), 2881. [姜丽丽, 鲁雄. 功能材料, 2012, 23 (43), 2881.]

    7. [7]

      (7) Sun, Y. Q.;Wu, Q.; Shi, G. Q. Energy Environ. Sci. 2011, 4 (4),1113. doi: 10.1039/c0ee00683a

    8. [8]

      (8) Wang, H.; Hu, Y. H. Energy Environ. Sci. 2012, 5 (8), 8182. doi: 10.1039/c2ee21905k

    9. [9]

      (9) Huang, C. C.; Li, C. H.; Shi, G. Q. Energy Environ. Sci. 2012, 5 (10), 8848. doi: 10.1039/c2ee22238h

    10. [10]

      (10) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. ActaPhys. -Chim. Sin. 2010, 26 (8), 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2012, 26 (8), 2073.] doi: 10.3866/PKU.WHXB20100812

    11. [11]

      (11) Wu, J. J.;Wang, Y.; Zhang, D.; Hou, B. R. J. Power Sources2011, 196 (3), 1141. doi: 10.1016/j.jpowsour.2010.07.087

    12. [12]

      (12) Xiao, L.; Damien, J.; Luo, J. Y.; Jang, H. D.; Huang, J. X.; He,Z. J. Power Sources 2012, 208 (1), 187.

    13. [13]

      (13) Li, S. Z.; Hu, Y. Y.; Xu, Q.; Sun, J.; Hou, B.; Zhang, Y. P.J. Power Sources 2012, 213 (1), 265.

    14. [14]

      (14) Zhang, Y. Z.; Mo, G. Q.; Li, X.W.; Ye, J. S. J. Power Sources2012, 197 (1), 93.

    15. [15]

      (15) Wen, Q.;Wang, S. Y.; Yan, J.; Cong, L. J.; Pan, Z. C.; Ren, Y.M.; Fan, Z. G. J. Power Sources 2012, 216 (1), 187.

    16. [16]

      (16) Ahmed, M. S.; Jeon, S. J. Power Sources 2012, 218 (1), 168.

    17. [17]

      (17) Liu, J.; Qiao, Y.; Guo, C. X.; Lim, S.; Song, H.; Li, C. M.Bioresour. Technol. 2012, 114 (1), 275.

    18. [18]

      (18) Palaniselvam, T.; Aiyappa, H. B.; Kurun t, S. J. Mater. Chem.2012, 22 (45), 23799. doi: 10.1039/c2jm35128e

    19. [19]

      (19) Yang, Z.; Yao, Z.; Fang, G. Y.; Nie, H. G.; Liu, Z.; Zhou, X. M.;Chen, X. A.; Huang, S. M. J. Am. Chem. Soc. 2012, 6 (1), 205.

    20. [20]

      (20) Wu, J. J.; Zhang, D.;Wang, Y.;Wan, Y.; Hou, B. R. J. PowerSources 2012, 198 (1), 122.

    21. [21]

      (21) Shi, Y. S.; Li, X. H.; Ning, Q. J. Electron. Compon. Mater. 2010,29 (8), 70. [史永胜, 李雪红, 宁青菊. 电子元件与材料, 2010,29 (8), 70.]

    22. [22]

      (22) Fu, Q.; Bao, X. H. Chin. Sci. Bull. 2009, 54 (18), 2657. [傅强, 包信和. 科学通报, 2009, 54 (18), 2657.] doi: 10.1360/972009-1537

    23. [23]

      (23) Zhang, Y. Z.; Mo, G. Q.; Li, X.W.; Zhang,W. D.; Zhang, J. Q.;Ye, J. S.; Huang, X. D.; Yu, C. Z. J. Power Sources 2011, 196 (13), 5402. doi: 10.1016/j.jpowsour.2011.02.067

    24. [24]

      (24) Salas, E. C.; Sun, Z.; Luttge, A.; Tour, J. M. ACS Nano 2010, 4 (8), 4852. doi: 10.1021/nn101081t

    25. [25]

      (25) Wang, G. M.; Qian, F.; Saltikov, C.W.; Jiao, Y. Q.; Li, Y. NanoRes. 2011, 4, 563. doi: 10.1007/s12274-011-0112-2

    26. [26]

      (26) Yuan, Y.; Zhou, S. G.; Zhao, B.; Zhuang, L.;Wang, Y. Q.Bioresour. Technol. 2012, 116 (1), 453.

    27. [27]

      (27) Zhuang, L.; Yuan, Y.; Yang, G. Q.; Zhou, S. G. Electrochem.Commun. 2012, 21 (1), 69.

    28. [28]

      (28) Huang, Y. X.; Liu, X.W.; Xie, J. F.; Sheng, G. P.;Wang, G. Y.;Zhang, Y. Y.; Xu, A.W.; Yu, H, Q. Chem. Commun. 2011, 47 (20), 5795. doi: 10.1039/c1cc10159e

    29. [29]

      (29) Xie, X.; Yu, G. H.; Liu, Z. N.; Criddle, C. S.; Cui, Y. EnergyEnviron. Sci. 2012, 5 (5), 6862. doi: 10.1039/c2ee03583a

    30. [30]

      (30) Xie, P. Y.; Zhuang, G. L.; Lü, Y. A.;Wang, J. G.; Li, X. N. ActaPhys. -Chim. Sin. 2012, 28 (2), 331. [谢鹏洋, 庄桂林, 吕永安, 王建国, 李小年. 物理化学学报, 2012, 28 (2), 331.] doi: 10.3866/PKU.WHXB201111021

    31. [31]

      (31) Hou, J. X.; Liu, Z. L.; Zhang, P. Y. J. Power Sources 2013, 224 (1), 139.

    32. [32]

      (32) He, Z. M.; Liu, J.; Qiao, Y.; Li, C. M.; Tan, T. T. Y. Nano Lett.2012, 12 (9), 4738. doi: 10.1021/nl302175j

    33. [33]

      (33) Feng, L. Y.; Chen, Y. G.; Chen, L. ACS Nano 2011, 5 (12), 9611.doi: 10.1021/nn202906f

    34. [34]

      (34) Gurunathan, S.; Han, J.W.; Dayem, A. A.; Eppakayala, V.; Kim,J. N. Int. J. Nanomed. 2012, 7 (1), 5901.

    35. [35]

      (35) Agarwal, S.; Zhou, X. Z.; Ye, F.; He, Q. Y.; Chen, G. C. K.; Soo,J.; Boey, F.; Zhang, H.; Chen, P. Langmuir 2010, 26 (4), 2244.doi: 10.1021/la9048743

    36. [36]

      (36) Jain, A.; Zhang, X. M.; Pastorella, G.; Connolly, J. O.; Barry,N.;Woolley, R.; Krishnamurthy, S.; Marsili, E.Bioelectrochemistry 2012, 87 (Suppl. 1), 28.

    37. [37]

      (37) Qiao, Y.; Bao, S. J.; Li, C. M.; Cui, X. Q.; Lu, Z. S.; Guo, J. ACSNano 2008, 2 (1), 113. doi: 10.1021/nn700102s

    38. [38]

      (38) Zuo, X.; He, S.; Li, D.; Peng, C.; Huang, Q.; Song, S.; Fan, C.Langmuir 2010, 26 (3), 1936. doi: 10.1021/la902496u

    39. [39]

      (39) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin.2012, 28 (11), 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28 (11), 2745.] doi: 10.3866/PKU.WHXB201208221

    40. [40]

      (40) Lai, L. F.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C.H.; ng, H.; Shen, Z. X.; Lin, J. Y.; Ruoff, R. S. EnergyEnviron. Sci. 2012, 5 (7), 7936. doi: 10.1039/c2ee21802j

    41. [41]

      (41) Liu, Q.; Zhang, H. Y.; Zhong, H.W.; Zhang, S. M.; Chen, S. L.Electrochim. Acta 2012, 81 (1), 313.

    42. [42]

      (42) Wen, Q.; Liu, Z. M.; Chen, Y.; Li, K. F.; Zhu, N. Z. ActaPhys. -Chim. Sin. 2008, 24 (6), 1063. [温青, 刘智敏,陈野, 李凯峰, 朱宁正. 物理化学学报, 2008, 24 (6), 1063.]doi: 10.3866/PKU.WHXB20080626

    43. [43]

      (43) Wang,W. L.; Ma, Z. F. Acta Phys. -Chim. Sin. 2012, 28 (12),2879. [王万丽, 马紫峰. 物理化学学报, 2012, 28 (12), 2879.]doi: 10.3866/PKU.WHXB201209252

    44. [44]

      (44) Zhang, L. X.; Liu, C. S.; Zhuang, L.; Li,W. S.; Zhou, S. G.Biosens. Bioelectron. 2009, 24 (9), 2825. doi: 10.1016/j.bios.2009.02.010

    45. [45]

      (45) Liang, Y. Y.; Li, Y. G.;Wang, H. L.; Zhou, J. G.;Wang, J.;Regier, T.; Dai, H. J. Nat. Mater. 2011, 10 (10), 780. doi: 10.1038/nmat3087

    46. [46]

      (46) Yong, Y. C.; Dong, X. C.; Mary, B. C. P.; Song, H.; Chen, P.ACS Nano 2012, 6 (3), 2394. doi: 10.1021/nn204656d

    47. [47]

      (47) Pirbadian, S.; EI-Naggar, M. Y. Phys. Chem. Chem. Phys. 2012,14 (40), 13802. doi: 10.1039/c2cp41185g

    48. [48]

      (48) Cheng, J. S.; Du, J.; Zhu,W. J. Carbohyd. Polym. 2012, 88 (1),61. doi: 10.1016/j.carbpol.2011.11.065

    49. [49]

      (49) Huang, L. P.; Regan, J. M.; Quan, X. Bioresour. Technol. 2011,102 (1), 316. doi: 10.1016/j.biortech.2010.06.096

    50. [50]

      (50) Liu, H.; Grot, S.; Logan, B. E. Environ. Sci. Technol. 2005, 39 (11), 4317. doi: 10.1021/es050244p

    51. [51]

      (51) Rozendal, R. A.; Hamelers, H. V. M.; Euverink, G. J.W.; Metz,S. J.; Buisman, C. J. N. Int. J. Hydrog. Energy 2006, 31 (12),1632. doi: 10.1016/j.ijhydene.2005.12.006

    52. [52]

      (52) Logan, B. E.; Call, D.; Cheng, S.; Hamelers, H. V. M.; Sleutels,T. J. A.; Jeremiasse, A.W.; Rozendal, R. A. Environ. Sci.Technol. 2008, 42 (23), 8630. doi: 10.1021/es801553z

    53. [53]

      (53) Wang, L. Y.; Chen, Y. G.; Huang, Q.; Feng, Y. Y.; Zhu, S. M.;Shen, S. B. J. Chem. Technol. Biotechnol. 2012, 87 (8), 1150.doi: 10.1002/jctb.v87.8

    54. [54]

      (54) Zhang, Y. M.; Merrill, M. D.; Logan, B. E. Int. J. Hydrog.Energy 2010, 35 (21), 12020. doi: 10.1016/j.ijhydene.2010.08.064

    55. [55]

      (55) Selembo, P. A.; Merrill, M. D.; Logan, B. E. Int. J. Hydrog.Energy 2010, 35 (2), 428. doi: 10.1016/j.ijhydene.2009.11.014

    56. [56]

      (56) Hu, H.; Fan, Y.; Liu, H. Int. J. Hydrog. Energy 2010, 35 (8),3227. doi: 10.1016/j.ijhydene.2010.01.131

    57. [57]

      (57) Tokash, J. C.; Logan, B. E. Int. J. Hydrog. Energy 2011, 36 (16),9439. doi: 10.1016/j.ijhydene.2011.05.080

    58. [58]

      (58) Zhang, T.; Nie, H.; Bain, T. S.; Lu, H.; Cui, M.; Snoeyenbos-West, O. L.; Franks, A. E.; Nevin, K. P.; Russell, T. P.; Lovley,D. R. Energy Environ. Sci. 2013, 6 (1), 217. doi: 10.1039/c2ee23350a

    59. [59]

      (59) Logan, B. E. ChemSusChem 2012, 5 (6), 988. doi: 10.1002/cssc.v5.6


  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    11. [11]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    18. [18]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    19. [19]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(1274)
  • Abstract views(2132)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return