Citation: CUI Ying, KUANG Yin-Jie, ZHANG Xiao-Hua, LIU Bo, CHEN Jin-Hua. Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol[J]. Acta Physico-Chimica Sinica, ;2013, 29(05): 989-995. doi: 10.3866/PKU.WHXB201303121 shu

Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol

  • Received Date: 17 December 2012
    Available Online: 12 March 2013

    Fund Project: 国家自然科学基金(21275041, 21235002, 21221003) (21275041, 21235002, 21221003) 湖南省自然科学基金(12JJ2010) (12JJ2010)高等学校博士学科点专项科研基金(20110161110009)资助项目 (20110161110009)

  • Carbon nanotubes were non-covalently functionalized by poly(diallyldimethylammonium chloride) (PDDA). Here, PDDA has three roles: reductant for the metal precursor of PtCl62-, stabilizer for in-situ produced Pt nanoparticles (Pt NPs), and anti-corrosion film for carbon nanotubes (CNTs). Surface-functionalization of CNTs with PDDA was characterized by Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis, and Raman spectroscopy. The results indicated that the surface of CNTs was successfully coated with PDDA film by π-π stacking interactions, and the functionalization process had no detrimental effect on the structure of the CNTs. The obtained catalyst (Pt NPs/ CNTs-PDDA) was characterized by transmission electron microscopy, and the results showed that Pt NPs with an average diameter of ca 2 nm were highly dispersed on the surface of CNTs-PDDA. The electrocatalytic properties of Pt NPs/CNTs-PDDA nanohybrids for methanol oxidation were further characterized by cyclic voltammetry and chronoamperometry. Compared with Pt NPs supported on the pristine CNTs, the Pt NPs/CNTs-PDDA catalyst had higher electrochemical surface area and specific mass activity, and better stability towards methanol electro-oxidation.

  • 加载中
    1. [1]

      (1) (a) McGrath, K. M.; Prakash, G. K. S.; Olah, G. A. J. Ind. Eng.Chem. 2004, 10 (7), 1063.

    2. [2]

      (b) Aricò, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1

    3. [3]

      (2), 133.

    4. [4]

      (c) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.;Wilkinson, D. P. J. Power Sources 2006, 155 (2), 95.

    5. [5]

      (2) (a) Colón-Mercado, H. R.; Kim, H.; Popov, B. N. Electrochem.Commun. 2004, 6 (8), 795. doi: 10.1016/j.elecom.2004.05.028

    6. [6]

      (b) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B2004, 108 (24), 8234.

    7. [7]

      (3) (a)Wang, J. J.; Yin, G. P.; Shao, Y. Y.; Zhang, S.;Wang, Z. B.;Gao, Y. Z. J. Power Sources 2007, 171 (2), 331. doi: 10.1016/j.jpowsour.2007.06.084

    8. [8]

      (b) Rao, V.; Simonov, P. A.; Savinova, E. R.; Plaksin, G. V.;Cherepanova, S. V.; Kryukova, G. N.; Stimming, U. J. PowerSources 2005, 145 (2), 178.

    9. [9]

      (c)Wang, Z. B.; Yin, G. P.; Shi, P. F. Carbon 2006, 44 (1), 133.

    10. [10]

      (d) Zhao, Y.; E. Y.; Fan, L. Z.; Qiu, Y. F.; Yang, S. H.Electrochim. Acta 2007, 52 (19), 5873.

    11. [11]

      (e) Xu, Q. J.; Zhou, X. J.; Li, Q. X. Acta Phys. -Chim. Sin. 2010,26 (8), 2135. [徐群杰, 周小金, 李巧霞, 李金光. 物理化学学报, 2010, 26 (8), 2135.] doi: 10.3866/PKU.WHXB20100802

    12. [12]

      (4) Quinn, B. M.; Dekker, C.; Lemay, S. G. J. Am. Chem. Soc.2005, 127 (17), 6146. doi: 10.1021/ja0508828

    13. [13]

      (5) (a) Hernadi, K.; Siska, A.; Thiên-Nga, L.; Forró, L.; Kiricsi, I.Solid State Ionics 2001, 141-142, 203.

    14. [14]

      (b) Li, Y. L.; Hu, F. P.;Wang, X.; Shen, P. K. Electrochem.Commun. 2008, 10 (7), 1101.

    15. [15]

      (c) Xu, H.; Zeng, L. P.; Xing, S. J.; Shi, G. Y.; Xian, Y. Z.; Jin,L. T. Electrochem. Commun. 2008, 10 (12), 1839.

    16. [16]

      (6) (a)Wang, S. Y.; Jiang, S. P.;Wang, X. Nanotechnology 2008, 19 (26), 265601. doi: 10.1088/0957-4484/19/26/265601

    17. [17]

      (b)Wang, S. Y.; Jiang, S. P.; White, T. J.; Guo, J.;Wang, X.J. Phys. Chem. C 2009, 113 (43), 18935.

    18. [18]

      (c) Sanles-Sobrido, M.; Correa-Duarte, M. A.; Carregal-Romero, S.; Rodríguez- nzález, B.; Álvarez-Puebla, R. A.;Hervés, P.; Liz-Marzán, L. M. Chem. Mater. 2009, 21 (8), 1531.

    19. [19]

      (7) Chen, J.;Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. J. Phys.Chem. B 2006, 110 (24), 11775.

    20. [20]

      (8) (a) Shrestha, S.; Liu, Y.; Mustain,W. E. Catal. Rev. 2011, 53 (3),256. doi: 10.1080/01614940.2011.596430

    21. [21]

      (b) Shao, Y.; Yin, G.; Gao, Y. J. Power Sources 2007, 171 (2),558.

    22. [22]

      (9) Colmenares, L. C.;Wurth, A.; Jusys, Z.; Behm, R. J. J. PowerSources 2009, 190 (1), 14.

    23. [23]

      (10) Zhang, S.; Shao, Y. Y.; Liao, H. G.; Engelhard, M. H.; Yin, G.P.; Lin, Y. H. ACS Nano 2011, 5 (3), 1785.

    24. [24]

      (11) (a) He,W.; Zou, L. L.; Zhou, Y.; Lu, X. J.; Li, Y.; Zhang, X. G.;Yang, H. Chem. J. Chin. Univ. 2012, 33 (1), 133. [何卫, 邹亮亮, 周毅, 卢向军, 李媛, 张校刚, 杨辉. 高等学校化学学报, 2012, 33 (1), 133.]

    25. [25]

      (b) He,W.; Jiang, H. J.; Zhou, Y.; Yang, S. D.; Xue, X. Z.; Zou,Z. Q.; Zhang, X. G.; Akins, D. L.; Yang, H. Carbon 2012, 50 (1), 265.

    26. [26]

      (c) Shen, X. F.; Chen, Q.; Pang, Y. H.; Cui, Y.; Qian, H. Sci.China Chem. 2011, 41 (7), 1184. 沈晓芳, 陈沁, 庞月红,崔燕, 钱和. 中国科学: 化学, 2011, 41 (7), 1184.]

    27. [27]

      (d) Qin, X.;Wang, H.;Wang, X.; Miao, Z.; Chen, L.; Zhao,W.;Shan, M.; Chen, Q. Sensors and Actuators B: Chemical 2010,147 (2), 593.

    28. [28]

      (12) (a) Chakraborty, S.; Raj, C. R. Carbon 2010, 48 (11), 3242. doi: 10.1016/j.carbon.2010.05.014

    29. [29]

      (b) Yang, D. Q.; Rochette, J. F.; Sacher, E. J. Phys. Chem. B2005, 109 (10), 4481.

    30. [30]

      (13) Chen, H. J.;Wang, Y. L.;Wang, Y. Z.; Dong, S. J.;Wang, E.Polymer 2006, 47 (2), 763. doi: 10.1016/j.polymer.2005.11.034

    31. [31]

      (14) Wang, S. Y.; Yu, D. S.; Dai, L. M. J. Am. Chem. Soc. 2011, 133 (14), 5182.

    32. [32]

      (15) Hsin, Y. L.; Hwang, K. C.; Yeh, C. T. J. Am. Chem. Soc. 2007,129 (32), 9999.

    33. [33]

      (16) Li, L.; Xing, Y. J. Electrochem. Soc. 2006, 153 (10), A1823.

    34. [34]

      (17) (a)Wang, J.; Yin, G.; Shao, Y.;Wang, Z.; Gao, Y. J. PowerSources 2008, 176 (1), 128. doi: 10.1016/j.jpowsour.2007.10.057

    35. [35]

      (b) Li, L.; Xing, Y. J. Power Sources 2008, 178 (1), 75.

    36. [36]

      (18) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi,L. J. Power Sources 2002, 105 (1), 13.

    37. [37]

      (19) (a) Leger, J. M.; Lamy, C. Berichte der Bunsengesellschaft fürPhysikalische Chemie 1990, 94 (9), 1021. doi: 10.1002/bbpc.v94:9

    38. [38]

      (b) Hamnett, A. Catal. Today 1997, 38 (4), 445.

    39. [39]

      (20) Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. J. Mater. Chem.2009, 19 (42), 7995. doi: 10.1039/b912104h


  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    12. [12]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    19. [19]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    20. [20]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

Metrics
  • PDF Downloads(660)
  • Abstract views(1420)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return