Citation:
CUI Ying, KUANG Yin-Jie, ZHANG Xiao-Hua, LIU Bo, CHEN Jin-Hua. Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol[J]. Acta Physico-Chimica Sinica,
;2013, 29(05): 989-995.
doi:
10.3866/PKU.WHXB201303121
-
Carbon nanotubes were non-covalently functionalized by poly(diallyldimethylammonium chloride) (PDDA). Here, PDDA has three roles: reductant for the metal precursor of PtCl62-, stabilizer for in-situ produced Pt nanoparticles (Pt NPs), and anti-corrosion film for carbon nanotubes (CNTs). Surface-functionalization of CNTs with PDDA was characterized by Fourier transform infrared (FTIR) spectrometry, thermogravimetric analysis, and Raman spectroscopy. The results indicated that the surface of CNTs was successfully coated with PDDA film by π-π stacking interactions, and the functionalization process had no detrimental effect on the structure of the CNTs. The obtained catalyst (Pt NPs/ CNTs-PDDA) was characterized by transmission electron microscopy, and the results showed that Pt NPs with an average diameter of ca 2 nm were highly dispersed on the surface of CNTs-PDDA. The electrocatalytic properties of Pt NPs/CNTs-PDDA nanohybrids for methanol oxidation were further characterized by cyclic voltammetry and chronoamperometry. Compared with Pt NPs supported on the pristine CNTs, the Pt NPs/CNTs-PDDA catalyst had higher electrochemical surface area and specific mass activity, and better stability towards methanol electro-oxidation.
-
Keywords:
-
Pt nanoparticle
, - Methanol,
- Electrocatalytic oxidation,
- PDDA,
- Carbon nanotube
-
-
-
-
[1]
(1) (a) McGrath, K. M.; Prakash, G. K. S.; Olah, G. A. J. Ind. Eng.Chem. 2004, 10 (7), 1063.
-
[2]
(b) Aricò, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1
-
[3]
(2), 133.
-
[4]
(c) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.;Wilkinson, D. P. J. Power Sources 2006, 155 (2), 95.
-
[5]
(2) (a) Colón-Mercado, H. R.; Kim, H.; Popov, B. N. Electrochem.Commun. 2004, 6 (8), 795. doi: 10.1016/j.elecom.2004.05.028
-
[6]
(b) Liu, Z. L.; Ling, X. Y.; Su, X. D.; Lee, J. Y. J. Phys. Chem. B2004, 108 (24), 8234.
-
[7]
(3) (a)Wang, J. J.; Yin, G. P.; Shao, Y. Y.; Zhang, S.;Wang, Z. B.;Gao, Y. Z. J. Power Sources 2007, 171 (2), 331. doi: 10.1016/j.jpowsour.2007.06.084
-
[8]
(b) Rao, V.; Simonov, P. A.; Savinova, E. R.; Plaksin, G. V.;Cherepanova, S. V.; Kryukova, G. N.; Stimming, U. J. PowerSources 2005, 145 (2), 178.
-
[9]
(c)Wang, Z. B.; Yin, G. P.; Shi, P. F. Carbon 2006, 44 (1), 133.
-
[10]
(d) Zhao, Y.; E. Y.; Fan, L. Z.; Qiu, Y. F.; Yang, S. H.Electrochim. Acta 2007, 52 (19), 5873.
-
[11]
(e) Xu, Q. J.; Zhou, X. J.; Li, Q. X. Acta Phys. -Chim. Sin. 2010,26 (8), 2135. [徐群杰, 周小金, 李巧霞, 李金光. 物理化学学报, 2010, 26 (8), 2135.] doi: 10.3866/PKU.WHXB20100802
-
[12]
(4) Quinn, B. M.; Dekker, C.; Lemay, S. G. J. Am. Chem. Soc.2005, 127 (17), 6146. doi: 10.1021/ja0508828
-
[13]
(5) (a) Hernadi, K.; Siska, A.; Thiên-Nga, L.; Forró, L.; Kiricsi, I.Solid State Ionics 2001, 141-142, 203.
-
[14]
(b) Li, Y. L.; Hu, F. P.;Wang, X.; Shen, P. K. Electrochem.Commun. 2008, 10 (7), 1101.
-
[15]
(c) Xu, H.; Zeng, L. P.; Xing, S. J.; Shi, G. Y.; Xian, Y. Z.; Jin,L. T. Electrochem. Commun. 2008, 10 (12), 1839.
-
[16]
(6) (a)Wang, S. Y.; Jiang, S. P.;Wang, X. Nanotechnology 2008, 19 (26), 265601. doi: 10.1088/0957-4484/19/26/265601
-
[17]
(b)Wang, S. Y.; Jiang, S. P.; White, T. J.; Guo, J.;Wang, X.J. Phys. Chem. C 2009, 113 (43), 18935.
-
[18]
(c) Sanles-Sobrido, M.; Correa-Duarte, M. A.; Carregal-Romero, S.; Rodríguez- nzález, B.; Álvarez-Puebla, R. A.;Hervés, P.; Liz-Marzán, L. M. Chem. Mater. 2009, 21 (8), 1531.
-
[19]
(7) Chen, J.;Wang, M.; Liu, B.; Fan, Z.; Cui, K.; Kuang, Y. J. Phys.Chem. B 2006, 110 (24), 11775.
-
[20]
(8) (a) Shrestha, S.; Liu, Y.; Mustain,W. E. Catal. Rev. 2011, 53 (3),256. doi: 10.1080/01614940.2011.596430
-
[21]
(b) Shao, Y.; Yin, G.; Gao, Y. J. Power Sources 2007, 171 (2),558.
-
[22]
(9) Colmenares, L. C.;Wurth, A.; Jusys, Z.; Behm, R. J. J. PowerSources 2009, 190 (1), 14.
-
[23]
(10) Zhang, S.; Shao, Y. Y.; Liao, H. G.; Engelhard, M. H.; Yin, G.P.; Lin, Y. H. ACS Nano 2011, 5 (3), 1785.
-
[24]
(11) (a) He,W.; Zou, L. L.; Zhou, Y.; Lu, X. J.; Li, Y.; Zhang, X. G.;Yang, H. Chem. J. Chin. Univ. 2012, 33 (1), 133. [何卫, 邹亮亮, 周毅, 卢向军, 李媛, 张校刚, 杨辉. 高等学校化学学报, 2012, 33 (1), 133.]
-
[25]
(b) He,W.; Jiang, H. J.; Zhou, Y.; Yang, S. D.; Xue, X. Z.; Zou,Z. Q.; Zhang, X. G.; Akins, D. L.; Yang, H. Carbon 2012, 50 (1), 265.
-
[26]
(c) Shen, X. F.; Chen, Q.; Pang, Y. H.; Cui, Y.; Qian, H. Sci.China Chem. 2011, 41 (7), 1184. 沈晓芳, 陈沁, 庞月红,崔燕, 钱和. 中国科学: 化学, 2011, 41 (7), 1184.]
-
[27]
(d) Qin, X.;Wang, H.;Wang, X.; Miao, Z.; Chen, L.; Zhao,W.;Shan, M.; Chen, Q. Sensors and Actuators B: Chemical 2010,147 (2), 593.
-
[28]
(12) (a) Chakraborty, S.; Raj, C. R. Carbon 2010, 48 (11), 3242. doi: 10.1016/j.carbon.2010.05.014
-
[29]
(b) Yang, D. Q.; Rochette, J. F.; Sacher, E. J. Phys. Chem. B2005, 109 (10), 4481.
-
[30]
(13) Chen, H. J.;Wang, Y. L.;Wang, Y. Z.; Dong, S. J.;Wang, E.Polymer 2006, 47 (2), 763. doi: 10.1016/j.polymer.2005.11.034
-
[31]
(14) Wang, S. Y.; Yu, D. S.; Dai, L. M. J. Am. Chem. Soc. 2011, 133 (14), 5182.
-
[32]
(15) Hsin, Y. L.; Hwang, K. C.; Yeh, C. T. J. Am. Chem. Soc. 2007,129 (32), 9999.
-
[33]
(16) Li, L.; Xing, Y. J. Electrochem. Soc. 2006, 153 (10), A1823.
-
[34]
(17) (a)Wang, J.; Yin, G.; Shao, Y.;Wang, Z.; Gao, Y. J. PowerSources 2008, 176 (1), 128. doi: 10.1016/j.jpowsour.2007.10.057
-
[35]
(b) Li, L.; Xing, Y. J. Power Sources 2008, 178 (1), 75.
-
[36]
(18) Pozio, A.; De Francesco, M.; Cemmi, A.; Cardellini, F.; Giorgi,L. J. Power Sources 2002, 105 (1), 13.
-
[37]
(19) (a) Leger, J. M.; Lamy, C. Berichte der Bunsengesellschaft fürPhysikalische Chemie 1990, 94 (9), 1021. doi: 10.1002/bbpc.v94:9
-
[38]
(b) Hamnett, A. Catal. Today 1997, 38 (4), 445.
-
[39]
(20) Zhang, S.; Shao, Y. Y.; Yin, G. P.; Lin, Y. H. J. Mater. Chem.2009, 19 (42), 7995. doi: 10.1039/b912104h
-
[1]
-
-
-
[1]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[4]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[5]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[6]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[7]
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
-
[8]
Chen Pu , Daijie Deng , Henan Li , Li Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021
-
[9]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[10]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[11]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[12]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[13]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[14]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[15]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[16]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[17]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[18]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[19]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024
-
[20]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[1]
Metrics
- PDF Downloads(660)
- Abstract views(1420)
- HTML views(74)