Citation:
XU Yong, JIANG Pei-Wen, LI Quan-Xin. Carbon Nanofibers-Supported Ni Catalyst for Hydrogen Production from Bio-Oil through Low-Temperature Reforming[J]. Acta Physico-Chimica Sinica,
;2013, 29(05): 1041-1047.
doi:
10.3866/PKU.WHXB201302225
-
Hydrogen is a clean energy with high heat value that has been widely used in industry. Previous studies indicate that biomass can be converted in to gaseous fuels (hydrogen), liquid fuels and other chemicals. Biomass is the only renewable carbon resource and has attracted increasing attention because of the increasing price of oil and its environmental friendliness. To decrease energy consumption and minimize cost, it is very important to develop a process to produce hydrogen from bio-oil by low temperature steam reforming over non-noble metal catalysts. This work reports a carbon nanofiberssupported Ni (Ni/CNFs) catalyst prepared by the homogeneous impregnation method. The Ni/CNFs catalyst was successfully used to produce hydrogen via low-temperature (350-550℃) steam reforming of bio-oil. The effects of temperature and water steam/carbon molar ratio (nS/nC) on the reforming of bio-oil were investigated. The highest carbon conversion and H2 yield over the 22% Ni/CNFs catalyst reached about 94.7% and 92.1%, respectively, at a reforming temperature of 550℃. The Ni/CNFs catalyst containing a uniform Ni distribution exhibited a much higher activity in low-temperature reforming of bio-oil at 350-450℃ than the usual Ni/Al2O3 catalyst. Reaction conditions were investigated and catalysts were characterized to reveal the relationship between catalyst structure and performance for hydrogen production from bio-oil.
-
-
-
[1]
(1) Galdámez, J. R.; García, L.; Bilbao, R. Energy Fuels 2005, 19,1133. doi: 10.1021/ef049718g
-
[2]
(2) Hou, T.; Yuan, L. X.; Ye, T. Q.; ng, L.; Tu, J.; Yamamoto, M.;Youshifumi, T.; Li, Q. X. Int. J. Hydrog. Energy 2009, 34, 9095.doi: 10.1016/j.ijhydene.2009.09.012
-
[3]
(3) Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. EnergyFuels 2005, 19, 2098. doi: 10.1021/ef0500538
-
[4]
(4) Das, D.; Vezirog?lu, T. N. Int. J. Hydrog. Energy 2001, 26, 13.doi: 10.1016/S0360-3199(00)00058-6
-
[5]
(5) Nourouzi, L. S.; Larachi, F.; Benali, M. Ind. Eng. Chem. Res.2008, 47, 7118. doi: 10.1021/ie800773a
-
[6]
(6) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today2009, 139, 244. doi: 10.1016/j.cattod.2008.08.039
-
[7]
(7) Medrano, J. A.; Oliva, M.; Ruiz, J.; García, L.; Arauzo, J.Energy 2011, 36, 2215. doi: 10.1016/j.energy.2010.03.059
-
[8]
(8) Bridgwater, A. V. Biomass Bioenerg. 2012, 38, 68. doi: 10.1016/j.biombioe.2011.01.048
-
[9]
(9) Yildiz, K.; Arif, H, I. Int. J. Hydrog. Energy 2009, 34, 8799.doi: 10.1016/j.ijhydene.2009.08.078
-
[10]
(10) Kan, T.; Xiong, J. X.; Li, X. L.; Ye, T. Q.; Yuan, L. X.;Youshifumi, T.; Yamamoto, M.; Li, Q. X. Int. J. Hydrog. Energy2010, 35, 518. doi: 10.1016/j.ijhydene.2009.11.010
-
[11]
(11) Ye, T. Q.; Yuan, L. X.; Chen, Y. Q.; Kan, T.; Tu, J.; Zhu, X. F.;Torimoto, Y.; Yamamoto, M.; Li, Q. X. Catal. Lett. 2009, 127,323. doi: 10.1007/s10562-008-9683-2
-
[12]
(12) Ekaterini, C. V.; Angeliki, A. L. Appl. Catal. A 2007, 351, 111.
-
[13]
(13) Xie, J. J.; Su, D. R.; Yin, X. L.;Wu, C. Z.; Zhu, J. X. Int. J.Hydrog. Energy 2011, 36, 15560.
-
[14]
(14) Kinoshita, C. M.; Turn, S. Q. Int. J. Hydrog. Energy 2003, 28,1065.
-
[15]
(15) Chornet, E.; Czernik, S. Nature 2002, 418, 928.
-
[16]
(16) Huber, G.W.; Shabaker, J.W.; Dumesic, J. A. Science 2003,300, 2075. doi: 10.1126/science.1085597
-
[17]
(17) Stefan, C.; Robert, E.; Richard, F. Catal. Today 2007, 129, 265.doi: 10.1016/j.cattod.2006.08.071
-
[18]
(18) Ekaterini, C. V.; Angeliki, A. L. Int. J. Hydrog. Energy 2007, 32,212. doi: 10.1016/j.ijhydene.2006.08.021
-
[19]
(19) Jonathan, R. M.; Joelle, D. B.; Shannon, M.; Robert, J. E.;Stefan, C.; Richard, J. F.; Anthony, M. D. Int. J. Hydrog. Energy2009, 34, 8519. doi: 10.1016/j.ijhydene.2009.07.099
-
[20]
(20) Kechagiopoulos, P. N.; Voutetakis, S. S.; Lemonidou, A. A.;Vasalos, I. A. Energy Fuels 2006, 20, 2155. doi: 10.1021/ef060083q
-
[21]
(21) Ba, T.; Chaala, A.; Garcia, P. M.; Rodrigue, D.; Roy, C. EnergyFuels 2004, 18, 704. doi: 10.1021/ef030118b
-
[22]
(22) Seyedeyn, A. F.; Salehi, E.; Abedi, J.; Harding, T. Fuel Process.Technol. 2011, 92, 563. doi: 10.1016/j.fuproc.2010.11.012
-
[23]
(23) Rioche, C.; Kulkarni, S.; Meunier, F. C.; Breen, J. P.; Burch, R.Appl. Catal. B 2005, 61, 130. doi: 10.1016/j.apcatb.2005.04.015
-
[24]
(24) Garcia, L.; French, R.; Czernik, S.; Chornet, E. Appl. Catal. A2000, 201, 225. doi: 10.1016/S0926-860X(00)00440-3
-
[25]
(25) Takanabe, K.; Aika, K.; Seshan, K.; Lefferts, L. J. Catal. 2004,227, 101. doi: 10.1016/j.jcat.2004.07.002
-
[26]
(26) Liguras, D. K.; Kondarides, D. I.; Verykios, X. E. Appl. Catal.B 2003, 43, 345. doi: 10.1016/S0926-3373(02)00327-2
-
[27]
(27) Kugai, J.; Velu, S.; Song, C. Catal. Lett. 2005, 101, 255. doi: 10.1007/s10562-005-4901-7
-
[28]
(28) Aupretre, F.; Descorme, C.; Duprez, D. Catal. Commun. 2002,3, 263. doi: 10.1016/S1566-7367(02)00118-8
-
[29]
(29) Domine, M. E.; Iojoiu, E. E.; Davidian, T.; Guilhaume, N.;Mirodatos, C. Catal. Today 2008, 133-135, 565.
-
[30]
(30) Xu, X.W.; Jiang, E. C.;Wang, M. F.; Li, B. S. Renew. Energy2012, 39, 126. doi: 10.1016/j.renene.2011.07.030
-
[31]
(31) Wang, S. R.; Li, X. B; Guo, L.; Luo, Z. Y. Int. J. Hydrog.Energy 2012, 37, 11122. doi: 10.1016/j.ijhydene.2012.05.011
-
[32]
(32) Wang, C.; Qiu, J. S.; Liang, C. H.; Xing, L.; Yang, X. M. Catal.Commun. 2008, 9, 1749.
-
[33]
(33) Bezemer, G. L.; Radstake, P. B.; Falke, U.; Oosterbeek, H.;Kuipers, H, P.; Dillen, A. J.; Jong, K. P. J. Catal. 2006, 237,152. doi: 10.1016/j.jcat.2005.10.031
-
[34]
(34) Eva, D.; Marta, L.; Salvador, O. Int. J. Hydrog. Energy 2010,35, 4576.
-
[35]
(35) Wang, H. J.; Zhao, F. Y.; Fujitac, S. I.; Masahiko, A. Catal.Commun. 2008, 9, 362. doi: 10.1016/j.catcom.2007.07.002
-
[36]
(36) Cortright, R. D.; Davda, R. R.; Dumesic, J. A. Nature 2002,418, 964. doi: 10.1038/nature01009
-
[1]
-
-
-
[1]
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
-
[2]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067
-
[3]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[4]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[5]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[6]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[7]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[8]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[9]
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
-
[10]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[11]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[12]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[13]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[14]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[15]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[16]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[17]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[18]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[19]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[20]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[1]
Metrics
- PDF Downloads(497)
- Abstract views(730)
- HTML views(17)