Citation: ZHANG Zhe, LU Dan-Feng, QI Zhi-Mei. Surface Plasmon Resonance Sensing Properties of Nanoporous ld Thin Films[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201302222 shu

Surface Plasmon Resonance Sensing Properties of Nanoporous ld Thin Films

  • Received Date: 15 January 2013
    Available Online: 22 February 2013

    Fund Project: 国家自然科学基金(60978042) (60978042) 国家重点基础研究发展规划项目(973) (2009CB320300) (973) (2009CB320300)北京市自然科学基金(3131001)资助 (3131001)

  • Nanoporous ld films were prepared by immersing Au-Ag alloy films with a thickness of ca 60 nm sputtered on glass substrates in nitrate acid to remove the Ag component. Using a home-made wavelength-interrogated surface plasmon resonance (SPR) sensor platform, the influence of the immersion time on the SPR properties of the nanoporous ld film was investigated. If the nanoporous ld film was immersed in aqueous solution, SPR was not detected in the wavelength range from 400 to 900 nm. However, when the nanoporous ld films were exposed to air, a strong SPR absorption peak was detected in the same spectral range. The peak position gradually moved to longer wavelength as the immersion time extended. The SPR of the nanoporous ld film in air enables the film to be used for in situ monitoring of gas-phase molecular adsorption and ex situ detection of biochemical molecules adsorbed in the liquid phase. Ex situ detection of three kinds of small molecules (L-glutathione, L-cysteine, and cysteamine) adsorbed to the nanoporous ld film was fulfilled. The results were compared with those obtained using a conventional SPR chip with a dense ld film, revealing that the nanoporous ld films have a higher sensitivity and lower detection limit than the dense ld layer because of their larger surface area. Adsorption of ethanol molecules in the gas phase was monitored in situ, and the time required to reach adsorption equilibrium was about 160 min.

  • 加载中
    1. [1]

      (1) Fujita, T.; Guan, P.; Mckenna, K.; Lang, X.; Hirata, A.; Zhang,L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; Ishikawa,Y.; Asao, N.; Yamamoto, Y.; Erlebacher, J.; Chen, M. Nat.Mater. 2012, 11, 775. doi: 10.1038/nmat3391

    2. [2]

      (2) Detsi, E.; Punzhin, S.; Rao, J.; Onck, P. R.; De Hosson, J. T. M.ACS Nano 2012, 6, 3734. doi: 10.1021/nn300179n

    3. [3]

      (3) Feng, J.;Wu, J. Small 2012, 8, 3786. doi: 10.1002/small.201201591

    4. [4]

      (4) Fang, C.; Bandaru, N. M.; Ellis, A. V.; Voelcker, N. H. J. Mater.Chem. 2012, 22, 2952. doi: 10.1039/c2jm14889g

    5. [5]

      (5) Cherevko, S.; Chung, C. H. Electrochem. Commun. 2011, 13,16. doi: 10.1016/j.elecom.2010.11.001

    6. [6]

      (6) Wittstock, A.;Wichmann, A.; Biener, J.; Bäumer, M. FaradayDiscuss 2011, 152, 87. doi: 10.1039/c1fd00022e

    7. [7]

      (7) Jiao, Y.; Ryckman, J. D.; Ciesielski, P. N.; Escobar, C. A.;Jennings, G. K.;Weiss, S. M. Nanotechnology 2011, 22,295302. doi: 10.1088/0957-4484/22/29/295302

    8. [8]

      (8) Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bumer, M.Science 2010, 327, 319. doi: 10.1126/science.1183591

    9. [9]

      (9) Musat, R.; Moreau, S.; Poidevin, F.; Mathon, M. H.; Pommeret,S.; Renault, J. P. Phys. Chem. Chem. Phys. 2010, 12, 12868.doi: 10.1039/c0cp00967a

    10. [10]

      (10) Qian, L.; Shen,W.; Qin, G.W.; Das, B. Nanotechnology 2010,21, 305705. doi: 10.1088/0957-4484/21/30/305705

    11. [11]

      (11) Seker, E.; Reed, M. L.; Begley, M. R. Materials 2009, 2, 2188.doi: 10.3390/ma2042188

    12. [12]

      (12) Qiu, H. J.; Xu, C. X.; Ji, G. L.; Huang, X. R.; Han, S. H.; Ding,Y.; Qu, Y. B. Acta Chim. Sin. 2008, 66, 2075. [邱华军, 徐彩霞, 姬广磊, 黄锡荣, 韩书华, 丁轶, 曲音波. 化学学报, 2008,66, 2075.]

    13. [13]

      (13) Wang, J. L.; Li, S.; Xia, R.; Zhang, X.; Chen, Y. F.Nanotechnology and Precision Engineering 2012, 10, 30.[王建立, 李晟, 夏热, 张兴, 陈云飞. 纳米技术与精密工程, 2012, 10, 30.]

    14. [14]

      (14) Wang, D.; Schaaf, P. J. Mater. Chem. 2012, 22, 5344. doi: 10.1039/c2jm15727f

    15. [15]

      (15) Abraham, A.; Mihaliuk, E.; Kumar, B.; Legleiter, J.; Gullion, T.J. Phys. Chem. C 2010, 114, 18109. doi: 10.1021/jp107112b

    16. [16]

      (16) Gutiérrez, A.; Osegueda, S.; Gutiérrez-Granados, S.; Alatorre,A.; García, M. G.; dínez, L. A. Electroanalysis 2008, 20,2294. doi: 10.1002/elan.200804324

    17. [17]

      (17) Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. J. Am. Chem.Soc. 2005, 127, 6516. doi: 10.1021/ja051145e

    18. [18]

      (18) Ruffato, G.; Romanato, F.; Garoli, D.; Cattarin, S. Opt. Express2011, 19, 13164. doi: 10.1364/OE.19.013164

    19. [19]

      (19) Lang, X.; Qian, L.; Guan, P.; Zi, J.; Chen, M. Appl. Phys. Lett.2011, 98, 093701. doi: 10.1063/1.3560482

    20. [20]

      (20) Yang, Y.;Wu, Y. H.; Hao, P.; Zhang, Z. Q. Spectroscopy andSpectral Analysis 2010, 30, 1898. [杨胤, 吴一辉, 郝鹏,张志强. 光谱学与光谱分析, 2010, 30, 1898.]

    21. [21]

      (21) Ahi, S.; Caneron, P. J.; Liu, J.; Knoll,W.; Erlebacher, J.; Yu, F.Plamonics 2008, 3, 13. doi: 10.1007/s11468-007-9048-5

    22. [22]

      (22) Maaroof, A. I.; Gentle, A.; Smith, G. B.; Cortie, M. B. J. Phys.D: Appl. Phys. 2007, 40, 5675. doi: 10.1088/0022-3727/40/18/024

    23. [23]

      (23) Yu, F.; Ahi, S.; Caminade, A. M.; Majoral, J. P.; Knoll,W.;Erlebacher, J. Anal. Chem. 2006, 78, 7346. doi: 10.1021/ac060829h

    24. [24]

      (24) Qi, Z. M.; Honma, I.; Zhou, H. S. Appl. Phys. Lett. 2007, 90,011102. doi: 10.1063/1.2424643

    25. [25]

      (25) Zhang, Z.; Lu, D. F.; Qi, Z. M. J. Phys. Chem. C 2012, 116,3342. doi: 10.1021/jp2102429

    26. [26]

      (26) Zhang, Z.; Lu, D. F.; Liu, Q.; Qi, Z. M.; Yang, L. B.; Liu, J. H.Analyst 2012, 137, 4822. doi: 10.1039/c2an16057a


  • 加载中
    1. [1]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240366

    2. [2]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240290

    4. [4]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309042

    5. [5]

      Chenghe Yang Yi Lü Rui Liu . The Rise to Fame of Digital PCR. University Chemistry, doi: 10.12461/PKU.DXHX202406111

    6. [6]

      Yang LIUJin TONGShuyan YU . Co(Ⅱ) coordination polymers: Structural characterization and fluorescence sensing of Al3+ in aqueous. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20250114

    7. [7]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202304020

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, doi: 10.3866/PKU.DXHX202309020

    10. [10]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230370

    11. [11]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202305038

    12. [12]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, doi: 10.12461/PKU.DXHX202403108

    13. [13]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, doi: 10.12461/PKU.DXHX202403054

    14. [14]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202406022

    15. [15]

      Haolin ZhanQiyuan FangJiawei LiuXiaoqi ShiXinyu ChenYuqing HuangZhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310045

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, doi: 10.12461/PKU.DXHX202408101

    18. [18]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, doi: 10.3866/PKU.DXHX202312024

    19. [19]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, doi: 10.12461/PKU.DXHX202403017

Metrics
  • PDF Downloads(1144)
  • Abstract views(1071)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return