Citation:
WANG Sha-Sha, LU Shan, SU Jia, GUO Zheng-Kai, LI Xue-Min, ZHANG Xue-Hua, HE Sheng-Tai, HE Tao. Influences of Polymerization Time on Structure and Properties of Polyaniline Counter Electrodes in Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2013, 29(03): 516-524.
doi:
10.3866/PKU.WHXB201301092
-
SO42? doped polyaniline (PANI) counter electrodes (CEs) on fluorine-doped tin oxide (FTO) glass substrates were fabricated, using electrochemical method under constant bias for different polymerization time. The effect of polymerization time on surface morphology, structure (such as doping level, conjugation and oxidization state), and electrocatalytic activity for I?/I3? redox reaction of the obtained PANI CEs was investigated by scanning electron microscopy (SEM), UV-Vis absorption spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). SEM results indicated that the growth of PANI films on FTO substrate occurred in two phases. Properly increasing polymerization time could increase the specific surface area of PANI CEs, affording more electrocatalytic sites for the I?/I3? redox reaction. Meanwhile, the conductivity of the PANI CEs increased gradually because of enhanced conjugation, emeraldine base (EB) structure, and SO42? doping degree. If the polymerization time was too long, however, the CE conductivity would decrease due to the formation of a thick film and superabundance of oxidized structure, resulting in an increase in the electron transfer resistance and decrease in the electrocatalytic activity of PANI CEs for I?/I3? redox reaction. Dye-sensitized solar cells (DSSCs) based on PANI CEs with a polymerization time of 300 s and D149 dye showed the best photovoltaic performance, with a solar-to-energy conversion efficiency of 5.30%. This result is approximately 88% of the efficiency of Pt CE based-solar cells, suggesting that PANI CEs polymerized with electrochemical method may replace Pt CEs in DSSCs.
-
-
-
[1]
(1) Regan, B. O.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Grätzel, M. J. Photochem. Photobiol. C: Photochem. Rev. 2003,4, 145. doi: 10.1016/S1389-5567(03)00026-1
-
[3]
(3) Grätzel, M. Accounts Chem. Res. 2009, 42, 1788. doi: 10.1021/ar900141y
-
[4]
(4) Papageorgiou, N.; Maier,W. F.; Grätzel, M. J. Electrochem.Soc. 1997, 144, 876. doi: 10.1149/1.1837502
-
[5]
(5) Papageorgiou, N. Coord. Chem. Rev. 2004, 248, 1421. doi: 10.1016/j.ccr.2004.03.028
-
[6]
(6) Wu, M. X.; Lin, X.;Wang, T. H.; Qiu, J. S.; Ma, T. L. EnergyEnviron. Sci. 2011, 4, 2308. doi: 10.1039/c1ee01059j
-
[7]
(7) Li, J.; Sun, M. X.; Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim.Sin. 2011, 27, 2255. [李靖, 孙明轩, 张晓艳, 崔晓莉. 物理化学学报, 2011, 27, 2255.] doi: 10.3866/PKU.WHXB20110901
-
[8]
(8) Li, Z. P.; Ye, B. X.; Hu, X. D.; Ma, X. Y.; Zhang, X. P.; Deng, Y.Q. Electrochem. Commun. 2009, 11, 1768. doi: 10.1016/j.elecom.2009.07.018
-
[9]
(9) Qin, Q.; Tao, J.; Yang, Y. Synth. Met. 2010, 160, 1167. doi: 10.1016/j.synthmet.2010.03.003
-
[10]
(10) Chen, J. Z.; Li, B.; Zheng J. F.; Zhao, J. H.; Jing, H.W.; Zhu, Z.P. Electrochim. Acta 2011, 56, 4624. doi: 10.1016/j.electacta.2011.02.097
-
[11]
(11) Tian, H. N.; Yu, Z.; Hagfeldt, A.; Kloo, L.; Sun, L. C. J. Am.Chem. Soc. 2011, 133, 9413. doi: 10.1021/ja2030933
-
[12]
(12) Ahmad, S.; Yum, J. H.; Butt, H. J.; Nazeeruddin, M. K.; Grätzel,M. ChemPhysChem 2010, 11, 2814. doi: 10.1002/cphc.201000612
-
[13]
(13) Lee, K. M.; Chen, P. Y.; Hsu, C. Y.; Huang, J. H.; Ho,W. H.;Chen, H. C.; Ho, K. C. J. Power Sources 2009, 188, 313. doi: 10.1016/j.jpowsour.2008.11.075
-
[14]
(14) Xia, J. B.; Chen, L.; Yanagida, S. J. Mater. Chem. 2011, 21,4644. doi: 10.1039/c0jm04116e
-
[15]
(15) Wu, J. H.; Li, Q. H.; Fan, L. Q.; Lan, Z.; Li, P. J.; Lin, J. M.;Hao, S. C. J. Power Sources 2008, 181, 172. doi: 10.1016/j.jpowsour.2008.03.029
-
[16]
(16) Sun, H. C.; Luo, Y. H.; Zhang, Y. D.; Li, D. M.; Yu, Z. X.; Li, K.X.; Meng, Q. B. J. Phys. Chem. C 2010, 114, 11673. doi: 10.1021/jp1030015
-
[17]
(17) Li, Q. H.;Wu, J. H.; Tang, Q.W.; Lan, Z.; Li, P. J.; Lin, J. M.;Fan, L. Q. Electrochem. Commun. 2008, 10, 1299. doi: 10.1016/j.elecom.2008.06.029
-
[18]
(18) Tai, Q. D.; Chen, B. L.; Guo, F.; Xu, S.; Hu, H.; Sebo, B.; Zhao,X. Z. ACS Nano 2011, 5, 3795. doi: 10.1021/nn200133g
-
[19]
(19) Zhang, J.; Hreid, T.; Li, X. X.; Guo,W.;Wang, L. P.; Shi, X. T.;Su, H. Q.; Yuan, Z. B. Electrochim. Acta 2010, 55, 3664. doi: 10.1016/j.electacta.2010.01.115
-
[20]
(20) Bhadra, S.; Khastgir, D.; Singha, N. K.; Lee, J. H. Prog. Polym.Sci. 2009, 34, 783. doi: 10.1016/j.progpolymsci.2009.04.003
-
[21]
(21) MacDiarmid, A. G.; Chiang, J. C.; Richter, A. F.; Epstein, A. J.Synth. Met. 1987, 18, 286.
-
[22]
(22) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.;Miiller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am.Chem. Soc. 1993, 115, 6382. doi: 10.1021/ja00067a063
-
[23]
(23) Stafström, S.; Sjögren, B.; Brédas, J. L. Synth. Met. 1989, 29,E219.
-
[24]
(24) Xu, Y. T.; Dai, L. Z.;Wu, H. H. Journal of Xiamen University2001, 40, 1073. [许一婷, 戴李宗, 吴辉煌. 厦门大学学报,2001, 40, 1073.]
-
[25]
(25) Huang,W. S.; MacDiarmid, A. G. Polymer 1993, 34, 1833. doi: 10.1016/0032-3861(93)90424-9
-
[26]
(26) Cao, Y.; Smith, P.; Heeger, A. J. Synth. Met. 1989, 32, 263. doi: 10.1016/0379-6779(89)90770-4
-
[27]
(27) Yin,W.; Ruckenstein, E. Synth. Met. 2000, 108, 39. doi: 10.1016/S0379-6779(99)00179-4
-
[28]
(28) Shreepathi, S.; Holze, R. Chem. Mater. 2005, 17, 4078. doi: 10.1021/cm050117s
-
[29]
(29) Qin, Q. Preparation and Properties of Polyaniline Electrolyteand Counter Electrode for DSSCs. Ph.D. Dissertation, NanjingUniversity of Aeronautics and Astronautics, Nanjing, 2010.[秦琦. 染料敏化太阳能电池用聚苯胺电解质及对电极的制备与性能研究[D]. 南京: 南京航空航天大学, 2010.]
-
[30]
(30) Saito, Y.; Kubo,W.; Kitamura, T.;Wada, Y.; Yanagida, S.J. Photochem. Photobiol. A: Chem. 2004, 164, 153. doi: 10.1016/j.jphotochem.2003.11.017
-
[31]
(31) Tang, H.; Kitani, A.; Shiotani, M. J. Appl. Electrochem. 1996,26, 36. doi: 10.1007/BF00248186
-
[1]
-
-
-
[1]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[2]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[3]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[4]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[5]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
-
[6]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[7]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[8]
Lutian Zhao , Yangge Guo , Liuxuan Luo , Xiaohui Yan , Shuiyun Shen , Junliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029
-
[9]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[10]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[11]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[12]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[13]
Zhongyan Cao , Youzhi Xu , Menghua Li , Xiao Xiao , Xianqiang Kong , Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017
-
[14]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[15]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[16]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[17]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[18]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[19]
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
-
[20]
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
-
[1]
Metrics
- PDF Downloads(1045)
- Abstract views(1402)
- HTML views(55)