Citation:
WANG Hai, XU Xue-Qing, SHI Ji-Fu, XU Gang. Application of Ionic Liquids with Carboxyl and Aromatic Ring Conjugated Anions in Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica,
;2013, 29(03): 525-532.
doi:
10.3866/PKU.WHXB201301091
-
A method of utilizing p-π conjugation effects for obtaining low-viscosity ionic liquids is presented. p-π conjugation effectively disperses anionic charge and reduces Coulombic interactions. Ionic liquids prepared in this study were 1-ethyl-3-methylimidazolium benzoate (EMIB) and 1-ethyl-3- methylimidazolium isonicotinate (EMIIN). They have carboxyl and aromatic ring p-π conjugated anions, and achieve low viscosities of 42 and 27 mPa·s, respectively. EMIB and EMIIN were employed as electrolytes, which were used to construct dye-sensitized solar cells (DSCs). After optimizing the composition, the ionic conductivity and triiodide ionic diffusion constant for the EMIB-based electrolyte were 1.43 mS·cm-1 and 1.45 × 10-7 cm2·s-1, respectively. For the EMIIN-based electrolyte, the ionic conductivity and triiodide ionic diffusion constant were 1.63 mS·cm-1 and 2.01×10-7 cm2·s-1, respectively. These were higher than the corresponding values for the EMIB-based electrolyte because of EMIIN's lower viscosity. DSCs based on these two electrolytes attained satisfactory energy conversion efficiencies of 2.85% and 4.30% for EMIB and EMIIN, respectively, under an illumination intensity of 300 W·m-2.
-
Keywords:
-
Ionic liquid
, - Viscosity,
- Electrolyte,
- Conductivity,
- Dye-sensitized solar cell
-
-
-
-
[1]
(1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737. doi: 10.1038/353737a0
-
[2]
(2) Kong, F. T.; Dai, S. Y. Progress in Chemistry 2006, 18, 1409.[孔凡太, 戴松元. 化学进展, 2006, 18, 1409.]
-
[3]
(3) Shi, J.; Peng, S.; Pei, J.; Liang, Y.; Cheng, F.; Chen, J. ACSAppl. Mater. Interfaces 2009, 1, 944. doi: 10.1021/am9000375
-
[4]
(4) Wang, M.; Pan, X.; Fang, X.; Guo, L.; Liu,W.; Zhang, C.;Huang, Y.; Hu, L.; Dai, S. Adv. Mater. 2010, 22, 5526. doi: 10.1002/adma.v22.48
-
[5]
(5) Yu, Q.;Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.;Wang, P.ACS Nano 2010, 4, 6032. doi: 10.1021/nn101384e
-
[6]
(6) Grätzel, M. J. Photochem. Photobiol. A 2004, 164, 3. doi: 10.1016/j.jphotochem.2004.02.023
-
[7]
(7) Pan, X.; Dai, S. Y.;Wang, K. J.; Shi, C.W.; Guo, L. ActaPhys. -Chim. Sin. 2005, 21, 697. [潘旭, 戴松元, 王孔嘉,史成武, 郭力. 物理化学学报, 2005, 21, 697.] doi: 10.3866/PKU.WHXB20050624
-
[8]
(8) Bai, Y.; Cao, Y.; Zhang, J.;Wang, M.; Li, R.;Wang, P.;Zakeeruddin, S. M.; Grätzel, M. Nat. Mater. 2008, 7, 626. doi: 10.1038/nmat2224
-
[9]
(9) Papageorgiou, N.; Athanassov, Y.; Armand, M.; Bonhote, P.;Pettersson, H.; Azam, A.; Grätzel, M. J. Electrochem. Soc.1996, 143, 3099. doi: 10.1149/1.1837171
-
[10]
(10) Shi, C.W.; Ge, Q.; Qiu, Z. G.; Li, B.; Han, S. K. ActaPhys. -Chim. Sin. 2007, 23, 1473. [史成武, 葛茜, 邱治国,李兵, 韩士奎. 物理化学学报, 2007, 23, 1473.] doi: 10.3866/PKU.WHXB20070932
-
[11]
(11) Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M.J. Am. Chem. Soc. 2003, 125, 1166. doi: 10.1021/ja029294+
-
[12]
(12) Zakeeruddin, S. M.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B2003, 107, 13280. doi: 10.1021/jp0355399
-
[13]
(13) Kuang, D.;Wang, P.; Ito, S.; Zakeeruddin, S. M.; Grätzel, M.J. Am. Chem. Soc. 2006, 128, 7732. doi: 10.1021/ja061714y
-
[14]
(14) Wachter, P.; Schreiner, C.; Zistler, M.; Gerhard, D.;Wasserscheid, P.; res, H. J. Microchim. Acta 2008, 160, 125.doi: 10.1007/s00604-007-0803-2
-
[15]
(15) Fredin, K.; rlov, M.; Pettersson, H.; Hagfeldt, A.; Kloo, L.;Boschloo, G. J. Phys. Chem. C 2007, 111, 13261. doi: 10.1021/jp072514r
-
[16]
(16) Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Chem. Eur. J. 2004,10, 6581.
-
[17]
(17) Fukumoto, K.; Yoshizawa, M.; Ohno, H. J. Am. Chem. Soc.2005, 127, 2398. doi: 10.1021/ja043451i
-
[18]
(18) Shi, J. F.;Wang, L.; Liang, Y. L.; Peng, S. J.; Cheng, F. Y.;Chen, J. J. Phys. Chem. C 2010, 114, 6814. doi: 10.1021/jp100029r
-
[19]
(19) Shi, J. F.;Wan, Q. C.; Xu, G.; Xu, X. Q.; Fan, Y. ActaPhys. -Chim. Sin. 2011, 27, 2360. [史继富, 万青翠, 徐刚,徐雪青, 樊晔. 物理化学学报, 2011, 27, 2360.] doi: 10.3866/PKU.WHXB20111023
-
[20]
(20) Bonhote, P.; Dias, A. P.; Armand, M.; Papageorgiou, N.;Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35,1168. doi: 10.1021/ic951325x
-
[21]
(21) Kawano, R.;Watanabe, M. Chem. Commun. 2003, 330.
-
[22]
(22) Wu, J.; Hao, S.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Li, P.;Yin, S.; Sato, T. J. Am. Chem. Soc. 2008, 130, 11568. doi: 10.1021/ja802158q
-
[23]
(23) Jerman, I.; Jovanovski, V.; Vuk, A. Š.; Hocevar, S. B.; Gaberšcek,M.; Jesih, A.; Orel, B. Electrochim. Acta 2008, 53, 2281. doi: 10.1016/j.electacta.2007.09.043
-
[24]
(24) Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M.Chem. Mater. 2004, 16, 2694. doi: 10.1021/cm049916l
-
[25]
(25) Shi, J. F.; Fan, Y.; Xu, X. Q.; Xu, G.; Chen, L. H. ActaPhys. -Chim. Sin. 2012, 28, 857. [史继富, 樊晔, 徐雪青,徐刚, 陈丽华. 物理化学学报, 2012, 28, 857.] doi: 10.3866/PKU.WHXB201202204
-
[26]
(26) Fabregat-Santia , F.; Bisquert, J.; Palomares, E.; Otero, L.;Kuang, D.; Zakeeruddin, S. M.; Grätzel, M. J. Phys. Chem. C2007, 111, 6550. doi: 10.1021/jp066178a
-
[27]
(27) Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga,S.; Sayama, K.; Arakawa, H. Langmuir 2004, 20, 4205. doi: 10.1021/la0357615
-
[1]
-
-
-
[1]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[2]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[3]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[4]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[5]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[6]
Xinran Zhang , Siqi Liu , Yichi Chen , Qingli Zou , Qinghong Xu , Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104
-
[7]
Jiandong Liu , Zhijia Zhang , Kamenskii Mikhail , Volkov Filipp , Eliseeva Svetlana , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048
-
[8]
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
-
[9]
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
-
[10]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[11]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[12]
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
-
[13]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[14]
Hanmei Lü , Xin Chen , Qifu Sun , Ning Zhao , Xiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016
-
[15]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[16]
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
-
[17]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[18]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[19]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[20]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[1]
Metrics
- PDF Downloads(936)
- Abstract views(933)
- HTML views(7)