Citation: HU Jun, SHI Wei, NI Zhe-Ming, LIU Jiao, XUE Ji-Long. Influence of Interlayer Anion on Supermolecular Interaction in Quaternary Hydrotalcites[J]. Acta Physico-Chimica Sinica, ;2013, 29(03): 491-497. doi: 10.3866/PKU.WHXB201301072 shu

Influence of Interlayer Anion on Supermolecular Interaction in Quaternary Hydrotalcites

  • Received Date: 9 November 2012
    Available Online: 7 January 2013

    Fund Project: 国家自然科学基金(51002137)资助项目 (51002137)

  • A periodic interaction model with different intercalated anions (X=F?, Cl?, Br?, I?, NO3?, OH?) is proposed for the CuZnMgAl quaternary hydrotalcites (CuZnMgAl-X). Based on density functional theory, the CuZnMgAl-X geometry was optimized using the CASTEP program. The distribution of anions in the interlayer, and the supra-molecular interaction between host layer and guest anions were investigated by analyzing binding energies, geometric parameters, Mulliken populations, hydrogen-bonding and densities of states. A decreased electronegativity of interlayer anion caused a transfer of charge from guest anions to host layer and a gradual decrease in the strength of electrostatic interaction and hydrogen bonding. The system band gap narrowed, electrons transferred to higher energy levels more easily, and the overall stability of the system decreased. The Cu dopant caused a deviation in CuZnMgAl-X valence band to high energies. Compared with traditional layered double hydroxides, the band gap narrowed and stability decreased, accounting for the difficulty in preparing copper-containing hydrotalcites.

  • 加载中
    1. [1]

      (1) Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173.doi: 10.1016/0920-5861(91)80068-K

    2. [2]

      (2) Duan, X.; Zhang, F. Z. Intercalation and Assembly Chemistry ofInorganic Supramolecular Materials; Science Press: Beijing,2009. [段雪, 张法智. 无机超分子材料的插层组装化学.北京: 科学出版社, 2009.]

    3. [3]

      (3) Bellotto, M.; Rebours, B.; Clause, O.; Lynch, L. J. Phys. Chem.1996, 100, 8535. doi: 10.1021/jp960040i

    4. [4]

      (4) Leuteritz, A.; Kutlu, B.; Meinl, J.;Wang, D.; Das, A.;Wagenknecht, U.; Heinrich, G. Mol. Cryst. Liq. Cryst. 2012,556, 107. doi: 10.1080/15421406.2012.635923

    5. [5]

      (5) Asouhidou, D. D.; Triantafyllidis, K. S.; Lazaridis, N. K.; Matis,K. A. J. Chem. Technol. Biot. 2012, 87, 575. doi: 10.1002/jctb.v87.4

    6. [6]

      (6) Parida, K. M.; Mohapatra, L. Chem. Eng. J. 2012, 179, 131.doi: 10.1016/j.cej.2011.10.070

    7. [7]

      (7) Wang, S. L.; Huang, J. L.; Chen, F. S. China Pulp & Paper2012, 31, 14. [王松林, 黄建林, 陈夫山. 中国造纸, 2012, 31,14.]

    8. [8]

      (8) Wu, J. S.; Xiao, Y. K.; Lin, Y. P.; Liang, H. Q.; Li, C. Y.; He, H.Y. Journal of Synthetic Crystals 2010, 39, 817. [吴健松, 肖应凯, 林意萍, 梁海群, 李春银, 何海英. 人工晶体学报, 2010, 39,817.]

    9. [9]

      (9) Wang, J. T.; Chen, L. P.; Zhan, Z. K. Chemical Research 2012,23, 39. [王军涛, 陈兰萍, 詹正坤. 化学研究, 2012, 23, 39.]

    10. [10]

      (10) Heermann, D.W. Computer Simulation Methods in TheoreticalPhysics; Springer-Verlag Press: Heidelberg, 1990; pp 387-439.

    11. [11]

      (11) Leach, A. R. Molecular Modelling: Principles and Applications;AddisonWesley Longman Limitted Press: Essex, 2001; pp26-454.

    12. [12]

      (12) Fraccarollo, A.; Cossi, M.; Marchese, L. Chem. Phys. Lett.2010, 494, 274. doi: 10.1016/j.cplett.2010.06.029

    13. [13]

      (13) Xu, Q.; Ni, Z. M.; Mao, J. H. J. Mol. Struct. -Theochem 2009,915, 122. doi: 10.1016/j.theochem.2009.08.033

    14. [14]

      (14) Wang, L. G.; Shi,W.; Yao, P.; Ni, Z. M.; Li, Y.; Liu, J. ActaPhys. -Chim. Sin. 2012, 28, 58. [王力耕, 施炜, 姚萍,倪哲明, 李远, 刘娇. 物理化学学报, 2012, 28, 58.]doi: 10.3866/PKU.WHXB20122858

    15. [15]

      (15) Segall, M. D.; Linda, P.; Probert, M.; Pickard, C.; Hasnip, P.;Clark, S.; Payne, M. J. Phys. -Condes. Matter 2002, 14, 2717.doi: 10.1088/0953-8984/14/11/301

    16. [16]

      (16) Ceperley, D. M.; Aider, B. J. Phys. Rev. Lett. 1980, 45, 566.doi: 10.1103/PhysRevLett.45.566

    17. [17]

      (17) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892

    18. [18]

      (18) Kresse, G.; Furthmiiller, J. Phys. Rev. B 1996, 54, 11169.doi: 10.1103/PhysRevB.54.11169

    19. [19]

      (19) Steven, G. B. J. Chem. Educ. 1985, 62, 101. doi: 10.1021/ed062p101

    20. [20]

      (20) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833. doi: 10.1063/1.1740588

    21. [21]

      (21) Scheiner, S. Hydrogen Bonding; Oxford University Press: NewYork, 1997.

    22. [22]

      (22) Jeffrey, G. A. An Introduction to Hydrogen Bond; OxfordUniversity Press: New York, 1997.

    23. [23]

      (23) Desiraju, G.; Steiner, T. The Weak Hydrogen Bond; OxfordUniversity Press: New York, 1999.

    24. [24]

      (24) Hong, Y.; Min,W.; Jing, M.; Evans, D. G.; Xue, D. J. Phys.Chem. A 2010, 114, 7369. doi: 10.1021/jp9121003

    25. [25]

      (25) Cao, G. T.; Xu, Q.; Ni, Z. M. Acta Chim. Sin. 2011, 69, 2947.[曹根庭, 胥倩, 倪哲明. 化学学报, 2011, 69, 2947.]

    26. [26]

      (26) Velu, S.; Suzuki, K.; Osaki, T. Catal. Lett. 1999, 62, 159. doi: 10.1023/A:1019023811688

    27. [27]

      (27) Morpur , S.; Jacono, M. L.; Porta, P. J. Solid State Chem.1996, 122, 324. doi: 10.1006/jssc.1996.0121

    28. [28]

      (28) Ni, Z. M.; Yao, P.; Liu, X. M.;Wang, Q. Q.; Xu, Q. Chem. J.Chin. Univ. 2010, 31, 2438. [倪哲明, 姚萍, 刘晓明,王巧巧, 胥倩. 高等学校化学学报, 2010, 31, 2438.]

    29. [29]

      (29) Liu, J.; Yao, P.; Ni, Z. M.; Li, Y.; Shi,W. Acta Phys. -Chim. Sin.2011, 27, 2088. [刘娇, 姚萍, 倪哲明, 李远, 施炜.物理化学学报, 2011, 27, 2088.] doi: 10.3866/PKU.WHXB20110923


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    7. [7]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    11. [11]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    12. [12]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    13. [13]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    15. [15]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    16. [16]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    17. [17]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    18. [18]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    19. [19]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(762)
  • Abstract views(1085)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return