Citation: FAN Yu-Qian, SHAO Hai-Bo, WANG Jian-Ming, LIU Liang, ZHANG Jian-Qing, CAO Chu-Nan. Discharge Performance of Alkaline Sulfide Fuel Cells Using Non-Precious Anode Catalysts[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 90-94. doi: 10.3866/PKU.WHXB20122890 shu

Discharge Performance of Alkaline Sulfide Fuel Cells Using Non-Precious Anode Catalysts

  • Received Date: 26 July 2011
    Available Online: 9 November 2011

    Fund Project: 浙江省自然科学基金(Y406192)与浙江省新材料及加工工程省重中之重学科开放课题(20110928)资助项目 (Y406192)与浙江省新材料及加工工程省重中之重学科开放课题(20110928)

  • The choice of fuel is an important issue influencing the selection of catalyst, cost, and commercialization of fuel cells. Electrochemically-active and low-cost fuels that can be oxidized by non-precious catalysts are an attractive objective. The native electrochemical activity and low cost of sulfide make it a suitable candidate. Fuel cells using alkaline sulfide as a fuel were developed. At room temperature, a single cell containing non-precious anode catalysts achieves a maximum power density of 12.3 mW·cm-2 with a current density of 42.8 mA·cm-2. Life tests show that alkaline sulfide fuel cells exhibit od durability. Ion chromatography detected considerable amounts of thiosulfate, sulfite, and sulfate. The deep oxidation and high capacity of sulfide make it an attractive fuel candidate. Compared with other fuels, sulfide has the advantages of being inexpensive, easy to transport, possesses high electrochemical activity, and can be catalyzed by non-precious catalysts.
  • 加载中
    1. [1]

      (1) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345.  

    2. [2]

      (2) Elam, C. C.; Padró, C. E. G.; Sandrock, G.; Luzzi, A.; Lindblad, P.; Hagen, E. F. Int. J. Hydrog. Energy 2003, 28, 601.  

    3. [3]

      (3) Jain, I. P. Int. J. Hydrog. Energy 2009, 34, 7368.  

    4. [4]

      (4) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today 2009, 139, 244.  

    5. [5]

      (5) Liu, H.; Song, C.; Zhang, L.; Zhang, J.;Wang, H.;Wilkinson, D. P. J. Power Sources 2006, 155, 95.  

    6. [6]

      (6) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14.  

    7. [7]

      (7) Zhou,W.; Zhou, Z.; Song, S.; Li,W.; Sun, G.; Tsiakaras, P.; Xin, Q. Appl. Catal. B-Environ. 2003, 46, 273.  

    8. [8]

      (8) Antolini, E. J. Power Sources 2007, 170, 1.  

    9. [9]

      (9) Serov, A.; Kwak, C. Appl. Catal. B-Environ. 2010, 98, 1.  

    10. [10]

      (10) Ma, J.; Choudhury, N. A.; Sahai, Y. Renew. Sust. Energ. Rev. 2010, 14, 183.  

    11. [11]

      (11) Demirci, U. B. J. Power Sources 2007, 169, 239.  

    12. [12]

      (12) Serov, A.; Kwak, C. Appl. Catal. B-Environ. 2009, 90, 313.  

    13. [13]

      (13) Liu, B. H.; Li, Z. P.; Suda, S. J. Electrochem. Soc. 2003, 150, A398.

    14. [14]

      (14) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem. Int. Edit. 2007, 46, 8024.  

    15. [15]

      (15) Peramunage, D.; Licht, S. Science 1993, 261, 1029.  

    16. [16]

      (16) Bendikov, T. A.; Yarnitzky, C.; Licht, S. J. Phys. Chem. B 2002, 106, 2989.  

    17. [17]

      (17) Remick, R. J.; Ang, P. G. P. Electrically Rechargeable Anionically Active Reduction-Oxidation Electrical Storage-Supply System. U.S. Pat. Appl. 4485154, 1984.

    18. [18]

      (18) Licht, S. Nature 1987, 300, 148.

    19. [19]

      (19) Hodes, G.; Manassen, J.; Cahen, D. J. Electrochem. Soc. 1980, 127, 544.  

    20. [20]

      (20) Bolmer, P.W. Electrochemical Oxidation of Hydrogen Sulfide. U.S. Pat. Appl. 3249522, 1966.

    21. [21]

      (21) Zito, R.; Kunz, L. J. Method of Operating a Fuel Cell Using Sulfide Fuel. U.S. Pat. Appl. 3920474, 1975.

    22. [22]

      (22) Wang, Q.; Li, H.; Chen, L.; Huang, X. Carbon 2001, 39, 2211.  

    23. [23]

      (23) Bidault, F.; Brett, D. J. L.; Middleton, P. H.; Brandon, N. P. J. Power Sources 2009, 187, 39.  

    24. [24]

      (24) Gülzow, E.; Schulze, M.; Gerke, U. J. Power Sources 2006, 156, 1.  

    25. [25]

      (25) Chen, K. Y.; Morris, J. C. Environ. Sci. Technol. 1972, 6, 529.  

    26. [26]

      (26) Kleinjan,W. E.; Keizer, A.; Janssen, A. J. H. Water Res. 2005, 39, 4093.  

    27. [27]

      (27) Fischer, H.; Schulz-Ekloff, G.;Wohrle, D. Chem. Eng. Technol. 1997, 20, 462.  

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    4. [4]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    11. [11]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(865)
  • Abstract views(3340)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return