Citation: FAN Yu-Qian, SHAO Hai-Bo, WANG Jian-Ming, LIU Liang, ZHANG Jian-Qing, CAO Chu-Nan. Discharge Performance of Alkaline Sulfide Fuel Cells Using Non-Precious Anode Catalysts[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 90-94. doi: 10.3866/PKU.WHXB20122890 shu

Discharge Performance of Alkaline Sulfide Fuel Cells Using Non-Precious Anode Catalysts

  • Received Date: 26 July 2011
    Available Online: 9 November 2011

    Fund Project: 浙江省自然科学基金(Y406192)与浙江省新材料及加工工程省重中之重学科开放课题(20110928)资助项目 (Y406192)与浙江省新材料及加工工程省重中之重学科开放课题(20110928)

  • The choice of fuel is an important issue influencing the selection of catalyst, cost, and commercialization of fuel cells. Electrochemically-active and low-cost fuels that can be oxidized by non-precious catalysts are an attractive objective. The native electrochemical activity and low cost of sulfide make it a suitable candidate. Fuel cells using alkaline sulfide as a fuel were developed. At room temperature, a single cell containing non-precious anode catalysts achieves a maximum power density of 12.3 mW·cm-2 with a current density of 42.8 mA·cm-2. Life tests show that alkaline sulfide fuel cells exhibit od durability. Ion chromatography detected considerable amounts of thiosulfate, sulfite, and sulfate. The deep oxidation and high capacity of sulfide make it an attractive fuel candidate. Compared with other fuels, sulfide has the advantages of being inexpensive, easy to transport, possesses high electrochemical activity, and can be catalyzed by non-precious catalysts.
  • 加载中
    1. [1]

      (1) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345.  

    2. [2]

      (2) Elam, C. C.; Padró, C. E. G.; Sandrock, G.; Luzzi, A.; Lindblad, P.; Hagen, E. F. Int. J. Hydrog. Energy 2003, 28, 601.  

    3. [3]

      (3) Jain, I. P. Int. J. Hydrog. Energy 2009, 34, 7368.  

    4. [4]

      (4) Holladay, J. D.; Hu, J.; King, D. L.;Wang, Y. Catal. Today 2009, 139, 244.  

    5. [5]

      (5) Liu, H.; Song, C.; Zhang, L.; Zhang, J.;Wang, H.;Wilkinson, D. P. J. Power Sources 2006, 155, 95.  

    6. [6]

      (6) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 14.  

    7. [7]

      (7) Zhou,W.; Zhou, Z.; Song, S.; Li,W.; Sun, G.; Tsiakaras, P.; Xin, Q. Appl. Catal. B-Environ. 2003, 46, 273.  

    8. [8]

      (8) Antolini, E. J. Power Sources 2007, 170, 1.  

    9. [9]

      (9) Serov, A.; Kwak, C. Appl. Catal. B-Environ. 2010, 98, 1.  

    10. [10]

      (10) Ma, J.; Choudhury, N. A.; Sahai, Y. Renew. Sust. Energ. Rev. 2010, 14, 183.  

    11. [11]

      (11) Demirci, U. B. J. Power Sources 2007, 169, 239.  

    12. [12]

      (12) Serov, A.; Kwak, C. Appl. Catal. B-Environ. 2009, 90, 313.  

    13. [13]

      (13) Liu, B. H.; Li, Z. P.; Suda, S. J. Electrochem. Soc. 2003, 150, A398.

    14. [14]

      (14) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem. Int. Edit. 2007, 46, 8024.  

    15. [15]

      (15) Peramunage, D.; Licht, S. Science 1993, 261, 1029.  

    16. [16]

      (16) Bendikov, T. A.; Yarnitzky, C.; Licht, S. J. Phys. Chem. B 2002, 106, 2989.  

    17. [17]

      (17) Remick, R. J.; Ang, P. G. P. Electrically Rechargeable Anionically Active Reduction-Oxidation Electrical Storage-Supply System. U.S. Pat. Appl. 4485154, 1984.

    18. [18]

      (18) Licht, S. Nature 1987, 300, 148.

    19. [19]

      (19) Hodes, G.; Manassen, J.; Cahen, D. J. Electrochem. Soc. 1980, 127, 544.  

    20. [20]

      (20) Bolmer, P.W. Electrochemical Oxidation of Hydrogen Sulfide. U.S. Pat. Appl. 3249522, 1966.

    21. [21]

      (21) Zito, R.; Kunz, L. J. Method of Operating a Fuel Cell Using Sulfide Fuel. U.S. Pat. Appl. 3920474, 1975.

    22. [22]

      (22) Wang, Q.; Li, H.; Chen, L.; Huang, X. Carbon 2001, 39, 2211.  

    23. [23]

      (23) Bidault, F.; Brett, D. J. L.; Middleton, P. H.; Brandon, N. P. J. Power Sources 2009, 187, 39.  

    24. [24]

      (24) Gülzow, E.; Schulze, M.; Gerke, U. J. Power Sources 2006, 156, 1.  

    25. [25]

      (25) Chen, K. Y.; Morris, J. C. Environ. Sci. Technol. 1972, 6, 529.  

    26. [26]

      (26) Kleinjan,W. E.; Keizer, A.; Janssen, A. J. H. Water Res. 2005, 39, 4093.  

    27. [27]

      (27) Fischer, H.; Schulz-Ekloff, G.;Wohrle, D. Chem. Eng. Technol. 1997, 20, 462.  

  • 加载中
    1. [1]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    2. [2]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    3. [3]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    6. [6]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

    9. [9]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    10. [10]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    14. [14]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    15. [15]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    16. [16]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    17. [17]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    18. [18]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    19. [19]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    20. [20]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(865)
  • Abstract views(3434)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return