Citation: MAN Mei-Ling, LU Chun-Hai, CHEN Wen-Kai, LI Yi, ZHANG Yong-Fan. Adsorption Properties of CO Molecules on Pt/t-ZrO2(101) Surfaces[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 51-57. doi: 10.3866/PKU.WHXB20122851 shu

Adsorption Properties of CO Molecules on Pt/t-ZrO2(101) Surfaces

  • Received Date: 25 August 2011
    Available Online: 30 September 2011

    Fund Project: 国家自然科学基金(90922022) (90922022)福建省高等学校新世纪优秀人才计划(HX2006-103)资助项目 (HX2006-103)

  • We studied the adsorption of CO molecules on perfect and Pt-adsorbed t-ZrO2(101) surfaces using a periodic slab model by PW91 of generalized gradient approximation (GGA) within the framework of density functional theory. The results indicated that the second sub-surface oxygen and the second bridge sites are the most stable adsorbed sites for CO and Pt on the ZrO2(101) surface, respectively. When the coverage is 0.25 ML (monolayer) the most stable models were obtained with adsorption energies of 56.2 and 352.7 kJ·mol-1. The most stable model of CO adsorbed on the Pt/t-ZrO2(101) surface was obtained by C-end adsorption with an adsorption energy of 323.8 kJ·mol-1. We considered vibrational frequency calculations, density of states and the Mulliken population of the adsorption systems before and after adsorption and these were compared for CO and Pt adsorption onto the ZrO2 surface. The results indicate that the C―O bond length of 0.1161 nm after adsorption at the C-end is elongated compared with the 0.1141 and 0.1136 nm of free and adsorbed on ZrO2. The vibrational frequency of CO at 2018 cm-1 is red-shifted compared with free CO. CO has some positive charge after adsorption and charge transfer is predominantly by the π back-donation bonding mechanism of the Pt 5d→CO 2π orbital.
  • 加载中
    1. [1]

      (1) Zou, H. B.; Chen, S. Z.; Liu, Z. L.; Lin,W. M. Int. J. Hydrog. Energy 2009, 34, 9324.

    2. [2]

      (2) Kim, H. Y.; Han, S. S.; Ryu, J. H.; Lee, H. M. J. Phys. Chem. C 2010, 114, 3156.

    3. [3]

      (3) Igarashi, H.; Fujino, T.;Watanabe, M. J. Electroanal. Chem. 1995, 391, 119.

    4. [4]

      (4) Dekkers, M. A. P.; Lippits, M. J.; Nieuwenhuys, B. E. Catal. Lett. 1998, 56 (4), 195.

    5. [5]

      (5) Rupprechter, G.; Dellwig, T.; Unterhalt, H. J. Phys. Chem. B 2001, 105 (18), 3797.

    6. [6]

      (6) Hadjiivanov, K.; Kn?zinger, H.; Mihaylov, M. J. Phys. Chem. B 2002, 106 (10), 2618.

    7. [7]

      (7) Shaikhutdinov, S. K.; Meyer, R.; Naschitzki, M. Catal. Lett. 2003, 86 (4), 211.

    8. [8]

      (8) Chen, J. G.; Xiang, H.W.; Dong, Q. N.;Wang, X. Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2001, 17 (2), 161. [陈建刚, 相宏伟, 董庆年, 王秀芝, 孙予罕. 物理化学学报, 2001, 17 (2), 161.]

    9. [9]

      (9) Chen, Y. Q.; ng, M. C.; Zhu, X. H.; Ming, H.; Tang, S. H. Acta Phys. -Chim. Sin. 2002, 23 (4), 715. [陈耀强, 龚茂初, 祝小红, 明虹, 唐水花. 高等学校化学学报, 2002, 23 (4), 715.]

    10. [10]

      (10) Jia, Y. X.; Guo, X. Y. Acta Phys. -Chim. Sin. 2005, 21 (3), 306. [贾玉香, 郭向云. 物理化学学报, 2005, 21 (3), 306.]

    11. [11]

      (11) Li, P. Chem. Res. Appl. 2005, 17 (6), 741. [李平. 化学研究与应用, 2005, 17 (6), 741.]

    12. [12]

      (12) Nygren, M. A.; Pettersson, L. G. M. J. Chem. Phys. 1996, 105 (20), 9339.

    13. [13]

      (13) Koper, M. T.; Shubina, T. E.; Van Santen, R. A. J. Phys. Chem. B 2002, 106 (3), 686.

    14. [14]

      (14) Bredow, T. J. Phys. Chem. B 2002, 106 (28), 7053.

    15. [15]

      (15) Orita, H.; Inada, Y. J. Phys. Chem. B 2005, 109 (47), 22469.

    16. [16]

      (16) Zhou, J.; Li, Z. H.;Wang,W. N.; Fan, K. N. J. Phys. Chem. A 2006, 110 (22), 7167.

    17. [17]

      (17) Dholabhai, P. P.; Ray, A. K. Phys. Scr. 2007, 75, 506.

    18. [18]

      (18) Seebauer, E. G.; Kong, A. C. F.; Schmidt, L. D. J. Vac. Sci. Technol. A 1987, 5 (4-1), 464.

    19. [19]

      (19) Yeo, Y. Y.; Vattuone, L.; King, D. A. J. Chem. Phys. 1997, 106 (1), 392.

    20. [20]

      (20) Wasileski, S. A.; Koper, M. T. M.;Weaver, M. J. J. Phys. Chem. B 2001, 105 (17), 3518.

    21. [21]

      (21) Doll, K. Surf. Sci. 2004, 573 (3), 464.

    22. [22]

      (22) Olsen, R. A.; Philipsen, P. H. T.; Baerends, E. J. J. Chem. Phys. 2003, 119 (8), 4522.

    23. [23]

      (23) Panagiotopoulou, P.; Christodoulakis, A.; Kondarides, D. I.; Boghosian, S. J. Catal. 2006, 240 (2), 114.

    24. [24]

      (24) Srinivasan, R.; Davis, B. H. Catal. Lett. 1992, 14 (2), 165.

    25. [25]

      (25) Dang, Z.; Anderson, B. G.; Amenomiya, Y.; Morrow, B. A. J. Phys. Chem. 1995, 99 (39), 14437.

    26. [26]

      (26) Tanabe, K. Mater. Chem. Phys. 1985, 13 (3-4), 347.

    27. [27]

      (27) Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. Stud. Surf. Sci. Catal. 1989, 51, 1.

    28. [28]

      (28) Jiang, L.;Wang, G. C.; Guan, N. J.;Wu, Y.; Cai, Z. S.; Pan, Y. M.; Zhao, X. Z.; Huang,W.; Li, Y.W.; Sun, Y. H.; Zhong, B. Acta Phys. -Chim. Sin. 2003, 19 (5), 393. [江凌, 王贵昌, 关乃佳, 吴杨, 蔡遵生, 潘荫明, 赵学庄, 黄伟, 李永旺, 孙予罕, 钟炳. 物理化学学报, 2003, 19 (5), 393.]

    29. [29]

      (29) Ren, Y. P.; Lu, Y. X.; Lou, Q. Acta Phys. -Chim. Sin. 2007, 23 (11), 1728. [任云鹏, 鲁玉祥, 娄琦. 物理化学学报, 2007, 23 (11), 1728.]

    30. [30]

      (30) Lyncha, M.; Hu, P. Surf. Sci. 2000, 458 (1-3), 1.

    31. [31]

      (31) Yamagishi, S.; Fujimoto, T.; Inada, Y.; Orita, H. J. Phys. Chem. B 2005, 109, 8899.

    32. [32]

      (32) Martin, R.; Gardner, P.; Bradshaw, A. M. Surf. Sci. 1995, 342, 69.

    33. [33]

      (33) Banholzer,W. F.; Parise, R. E.; Masel, R. I. Surf. Sci. 1985, 155 (2-3), 653.

    34. [34]

      (34) Anez, R.; Sierraalta, A.; Martorell, G. J. Mol. Struct. 2009, 900, 59.

    35. [35]

      (35) Maseras, F.; Morokuma, K. J. Comp. Chem. 1995, 16 (9), 1170.

    36. [36]

      (36) Dilara, P. A.; Vohs, J. M. J. Phys. Chem. 1995, 99 (47), 17259.  

    37. [37]

      (37) Zhu, X.; Xie, Y.; Liu, C. J.; Zhang, Y. P. J. Mol. Catal. A 2008, 282 (1-2), 67.  

    38. [38]

      (38) Graf, P. O.; de Vlieger, D. J. M.; Mojet, B. L.; Lefferts, L. J. Catal. 2009, 262 (2), 181.

    39. [39]

      (39) Mitterdorfer, A.; Gauckler, L. J. Solid State Ionics 1999, 117 (3-4), 187.

    40. [40]

      (40) Bitter, J. H.; Seshan, K.; Lercher, J. A. J. Catal. 1997, 171 (1), 279.

    41. [41]

      (41) Bitter, J. H.; Seshan, K.; Lercher, J. A. Top. Catal. 2000, 10 (3-4), 295.

    42. [42]

      (42) Hofmann, A.; Clark, S. J.; Oppel, M.; Hahndorfk, I. Phys. Chem. Chem. Phys. 2002, 4, 3500.

    43. [43]

      (43) Delly, B. J. Chem. Phys. 1990, 92 (1), 508.

    44. [44]

      (44) Delly, B. J. Chem. Phys. 2000, 113 (18), 7756.

    45. [45]

      (45) Delly, B. J. Phys. Chem. 1996, 100, 6107.

    46. [46]

      (46) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46 (11), 6671.

    47. [47]

      (47) Lide, D. CRC Handbook of Chemistry and Physics. CRC Press: Boca Raton, 2003; 9-20.

    48. [48]

      (48) Ma, Z. Y.; Yang, C.;Wei,W.; Li,W. H.; Sun, Y. H. J. Mol. Catal. A: Chem. 2005, 227, 119.

    49. [49]

      (49) Yang, Y. L.; Chen,W. K.; Guo, X. L, Y.; Zhang, Y. F. Chin. J. Struct. Chem. 2010, 29 (7), 1021.

    50. [50]

      (50) Nibbelke, R. H.; Campman, M. A. J.; Hoebink, J. H. B. J.; Marin, G. B. J. Catal. 1997, 171 (2), 358.

    51. [51]

      (51) Herz, R. K.; Marin, S. P. J. Catal. 1980, 65, 281.

    52. [52]

      (52) Oh, H.; Fisher, G. B.; Carpenter, J. E.; odman, D.W. J. Catal. 1986, 100, 360.

    53. [53]

      (53) Yeo, Y. Y.; Vattuone, L.; King, D. A. J. Chem. Phys. 1997, 106, 1990.

    54. [54]

      (54) Chafik, T.; Dulaurent, O.; Gass, J. L.; Bianchi, D. J. Catal. 1998, 179, 503.

    55. [55]

      (55) Dulaurent, O.; Chandes, K.; Bouly, C.; Bianchi, D. J. Catal. 1999, 188, 237.

    56. [56]

      (56) Dulaurent, O.; Bianchi, D. Appl. Catal. A 2000, 196, 271.

    57. [57]

      (57) Eichler, A. Phys. Rev. B 2003, 68, 205408.

    58. [58]

      (58) Dulaurent, O.; Bianchi, D. Appl. Catal. A 2001, 207 (1-2), 211.

    59. [59]

      (59) Bleakley, K.; Hu, P. J. Am. Chem. Soc. 1999, 121, 7644.

    60. [60]

      (60) Pan, D. A.; Zhao, C. D.; Zheng, Z. X. Structures of Matters, 2nd ed.; Higher Education Press: Beijing, 1989; 200 [潘道皑, 赵成大, 郑载兴. 物质结构. 北京: 高等教育出版社, 1989: 200]

    61. [61]

      (61) Sun, B. Z.; Chen,W. K.; Zheng, J. D.; Lu, C. H. Appl. Surf. Sci. 2008, 255 (5), 3141.

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    3. [3]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    13. [13]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

Metrics
  • PDF Downloads(1097)
  • Abstract views(4361)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return