Citation:
DONG Hua-Qing, PAN Xi, XIE Qin, MENG Qiang-Qiang, GAO Jian-Rong, WANG Jian-Guo. CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays[J]. Acta Physico-Chimica Sinica,
;2012, 28(01): 44-50.
doi:
10.3866/PKU.WHXB20122844
-
Density functional theory (DFT) calculations were used to investigate the structural and electronic properties of V-, Cr-, Pd-, Pt-, and Au-doped titania nanotube arrays (TNTAs) where Ti was replaced by dopants. The adsorption of CO and the formation of CO2 on these various nanotube arrays were also studied in detail. We found that CO physisorbed weakly inside the TNTAs and CO was oxidized by lattice oxygen to form CO2 by the redox mechanism. This may thus be attributed to the unique confinement effect and to different metal doping. All the metal doped systems except the Cr-TNTAs showed a lower activation energy barrier than the undoped TNTAs, indicating that proper metal dopants can promote CO oxidation. The reaction on the Pd- or Au-doped TNTAs had the lowest barrier. Therefore, we found that Pd- or Au-doped TNTAs led to enhanced catalytic activity for CO oxidation at low temperatures.
-
-
-
[1]
(1) Hoffman, M. R.; Martin, S. T.; Choi,W.; Bahnemann, D.W.Chem. Rev. 1995, 95 (1), 69.
-
[2]
(2) Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima,T. J. Phys. Chem. B 2004, 108, 11054.
-
[3]
(3) Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew. Chem. Int. Edit.2005, 44, 2100.
-
[4]
(4) Ivanovskaya, V. V.; Enyashin, A. N.; Ivanovskii, A. L.Mendeleev Commun. 2003, 13 (1), 5.
- [5]
-
[6]
(6) Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett.2007, 7 (1), 69.
-
[7]
(7) Varghese, O. K.; ng, D.; Paulose, M.; Ong, K. G.; Dickey, E.C.; Grimes, C. A. Adv. Mater. 2003, 15, 624.
- [8]
-
[9]
(9) Rivera A. P.; Tanaka K.; Hisanaga T. Appl. Catal. B 1993, 3 (1),37.
-
[10]
(10) ng, D.; Grimes, C. A.; Varghese, O. K.; Hu,W. C.; Singh, R.S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331.
-
[11]
(11) Chien, S. H.; Liou, Y. C.; Kuo, M. C. Synth. Met. 2005, 152, 333.
-
[12]
(12) Idakiev, V.; Yuan, Z. Y.; Tabakova, T.; Su, B. L. Appl. Catal. A2005, 281, 149.
-
[13]
(13) Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.;Walsh, F. C. J. Catal. 2005, 235, 10.
- [14]
-
[15]
(15) Zhu, B.; Guo, Q.; Huang, X.;Wang, S.; Zhang, S.;Wu, S.;Huang,W. J. Mol. Catal. A 2006, 249, 211.
-
[16]
(16) Enyashin, A. N.; Seifert, G. Phys. Stat. Sol. B 2005, 242, 1361.
-
[17]
(17) Akpan, U. G.; Hameed, B. H. Appl. Catal. A 2010, 375 (1), 1.
-
[18]
(18) Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. J. Photochem. Photobiol. A- Chem. 1993, 72, 269.
-
[19]
(19) Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95,735.
-
[20]
(20) Murruni, L.; Leyva, G.; Litter, M. I. Catal. Today 2007, 129,127.
- [21]
- [22]
-
[23]
(23) Corti, C.W.; Holliday, R. J.; Thompson, D. T. Appl. Catal. A2005, 291, 253.
-
[24]
(24) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal.1989, 115, 301.
-
[25]
(25) An,W.; Pei, Y.; Zeng, X. C. Nano Lett. 2008, 8 (1), 195.
-
[26]
(26) Einaga, H.; Harada, M.; Futamura, S.; Ibusuki, T. J. Phys. Chem. B 2003, 107, 9290.
-
[27]
(27) Vorontsov, A. V.; Savinov, E. N.; Barannik, G. B.; Troitsky, V.N.; Parmon, V. N. Catal. Today 1997, 39, 207.
-
[28]
(28) Zhang, M.; Jin, Z. S.;Wang, S. B.; Zhang, S. L.; Zhang, Z. J.Acta Phys. -Chim. Sin. 2003, 19, 100.
-
[29]
(29) Valden, M.; Lai, X.; odman, D.W. Science 1998, 281, 1647.
-
[30]
(30) Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.;Ichikawa, S.; Haruta, M. J. Catal. 2001, 202, 256.
- [31]
-
[32]
(32) Chen, M.; Cai, Y.; Yan, Z.; odman, D.W. J. Am. Chem. Soc.2006, 128, 6341.
-
[33]
(33) Vesborg, P. C. K.; In S. I.; Olsen, J. L.; Henriksen, T. R.;Abrams, B. L.; Hou, Y.; Kleiman-Shwarsctein, A.; Hansen, O.;Chorkendorff, I. J. Phys. Chem. C 2010, 114, 11162.
-
[34]
(34) Liu, Y. L.; You, C. R.; Li, Y.; He, T.; Zhang, X. Q.; Suo Z. H.Acta Phys. -Chim. Sin. 2010, 26, 2455. [刘玉良, 由翠荣, 李杨, 何涛, 张香芹, 索掌怀. 物理化学学报, 2010, 26, 2455.]
-
[35]
(35) Yu, J.;Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin.2008, 24, 1751. [俞俊,吴贵升,毛东森,卢冠忠.物理化学学报, 2008, 24, 1751.]
-
[36]
(36) Ntho, T. A.; Anderson, J. A.; Scurrell, M. S. J. Catal. 2009, 261,94.
-
[37]
(37) Akita, T.; Okumura, M.; Tanaka, K.; Ohkuma, K.; Kohyama,M.; Koyanagi, T.; Date, M.; Tsubota, S.; Haruta, M. Surf. Interface Anal. 2005, 37, 265.
-
[38]
(38) Meng, Q. Q.;Wang, J. G.; Xie, Q.; Li, X. N. J. Phys. Chem. C2010, 114, 9251.
-
[39]
(39) Meng, Q. Q.;Wang, J. G.; Xie, Q.; Dong, H. Q.; Li, X. N. Catal.Today 2011, 165, 145.
-
[40]
(40) Su, Y.; Meng, Q. Q.;Wang, J. G. J. Phys. Chem. C 2009, 113,21338.
-
[41]
(41) Delley, B. J. Chem. Phys. 1990, 92 (1), 508.
- [42]
- [43]
-
[44]
(44) Yang, K. S.; Dai, Y.; Huang, B. B.; Whangbo, M. H. Chem. Mater. 2008, 20, 6528.
-
[45]
(45) Le, L. C.; Ma, X. G.; Tang, H.;Wang, Y.; Li, X.; Jiang, J. J. Acta Phys. Sin. 2010, 59, 1314. [乐伶聪, 马新国, 唐豪, 王扬,李翔, 江建军. 物理学报, 2010, 59, 1314.]
-
[46]
(46) Yao, Y. B.; Xie, T.; Gao, Y. M. Handbook of Physical Chemistry; Shanghai Science and Technology Press: Shanghai,1985; pp 99-104. [姚允斌, 解涛, 高英敏. 物理化学手册.上海: 上海科学技术出版社, 1985: 99-104.]
-
[47]
(47) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.]
-
[48]
(48) Ghicov, A.; Schmidt, B.; Kunze, J.; Schmuki, P. Chem. Phys. Lett. 2007, 433, 323.
-
[49]
(49) Yang, K.; Dai, Y.; Huang, B. ChemPhysChem 2009, 10, 2327.
-
[50]
(50) Lide, D. R. CRC Handbook of Chemistry and Physics, 76th ed.;CRC Press: New York, 1996.
-
[51]
(51) Pala, R. G. S.; Metiu, H. J. Phys. Chem. C 2007, 111, 8617.
-
[52]
(52) Mars, P.; van Krevelen, P.W. Chem. Eng. Sci. 1954, 3, 41.
- [53]
-
[54]
(54) Mguig, B.; Calatayud, M.; Minot, C. J. Mol. Struct. -Theochem2004, 709, 73.
-
[55]
(55) Wang, Z.; Zhao, Y.; Cui, X.; Tan, S.; Zhao, A.;Wang, B.; Yang,J.; Hou, J. G. J. Phys. Chem. C 2010, 114, 18222.
-
[1]
-
-
-
[1]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[2]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[5]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[6]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[7]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[8]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[9]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[10]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[11]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[12]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[13]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[14]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[15]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[16]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[17]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[18]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[19]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[20]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[1]
Metrics
- PDF Downloads(1299)
- Abstract views(3024)
- HTML views(5)