Citation: DONG Hua-Qing, PAN Xi, XIE Qin, MENG Qiang-Qiang, GAO Jian-Rong, WANG Jian-Guo. CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 44-50. doi: 10.3866/PKU.WHXB20122844 shu

CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays

  • Received Date: 6 September 2011
    Available Online: 28 October 2011

    Fund Project: 国家自然科学基金(20906081) (20906081)浙江省自然科学基金(R4110345)资助项目 (R4110345)

  • Density functional theory (DFT) calculations were used to investigate the structural and electronic properties of V-, Cr-, Pd-, Pt-, and Au-doped titania nanotube arrays (TNTAs) where Ti was replaced by dopants. The adsorption of CO and the formation of CO2 on these various nanotube arrays were also studied in detail. We found that CO physisorbed weakly inside the TNTAs and CO was oxidized by lattice oxygen to form CO2 by the redox mechanism. This may thus be attributed to the unique confinement effect and to different metal doping. All the metal doped systems except the Cr-TNTAs showed a lower activation energy barrier than the undoped TNTAs, indicating that proper metal dopants can promote CO oxidation. The reaction on the Pd- or Au-doped TNTAs had the lowest barrier. Therefore, we found that Pd- or Au-doped TNTAs led to enhanced catalytic activity for CO oxidation at low temperatures.
  • 加载中
    1. [1]

      (1) Hoffman, M. R.; Martin, S. T.; Choi,W.; Bahnemann, D.W.Chem. Rev. 1995, 95 (1), 69.

    2. [2]

      (2) Tachikawa, T.; Tojo, S.; Fujitsuka, M.; Majima,T. J. Phys. Chem. B 2004, 108, 11054.  

    3. [3]

      (3) Macak, J. M.; Tsuchiya, H.; Schmuki, P. Angew. Chem. Int. Edit.2005, 44, 2100.  

    4. [4]

      (4) Ivanovskaya, V. V.; Enyashin, A. N.; Ivanovskii, A. L.Mendeleev Commun. 2003, 13 (1), 5.

    5. [5]

      (5) Grätzel, M. Nature 2001, 414, 338.  

    6. [6]

      (6) Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett.2007, 7 (1), 69.

    7. [7]

      (7) Varghese, O. K.; ng, D.; Paulose, M.; Ong, K. G.; Dickey, E.C.; Grimes, C. A. Adv. Mater. 2003, 15, 624.  

    8. [8]

      (8) Fujishima, A.; Honda, K. Nature 1972, 238, 37.  

    9. [9]

      (9) Rivera A. P.; Tanaka K.; Hisanaga T. Appl. Catal. B 1993, 3 (1),37.

    10. [10]

      (10) ng, D.; Grimes, C. A.; Varghese, O. K.; Hu,W. C.; Singh, R.S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331.  

    11. [11]

      (11) Chien, S. H.; Liou, Y. C.; Kuo, M. C. Synth. Met. 2005, 152, 333.  

    12. [12]

      (12) Idakiev, V.; Yuan, Z. Y.; Tabakova, T.; Su, B. L. Appl. Catal. A2005, 281, 149.  

    13. [13]

      (13) Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.;Walsh, F. C. J. Catal. 2005, 235, 10.  

    14. [14]

      (14) Tsai, C. C.; Teng, H. Chem. Mater. 2004, 16, 4352.  

    15. [15]

      (15) Zhu, B.; Guo, Q.; Huang, X.;Wang, S.; Zhang, S.;Wu, S.;Huang,W. J. Mol. Catal. A 2006, 249, 211.  

    16. [16]

      (16) Enyashin, A. N.; Seifert, G. Phys. Stat. Sol. B 2005, 242, 1361.  

    17. [17]

      (17) Akpan, U. G.; Hameed, B. H. Appl. Catal. A 2010, 375 (1), 1.

    18. [18]

      (18) Ishitani, O.; Inoue, C.; Suzuki, Y.; Ibusuki, T. J. Photochem. Photobiol. A- Chem. 1993, 72, 269.  

    19. [19]

      (19) Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95,735.  

    20. [20]

      (20) Murruni, L.; Leyva, G.; Litter, M. I. Catal. Today 2007, 129,127.  

    21. [21]

      (21) Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709.  

    22. [22]

      (22) Campbell, C. T. Science 2004, 306, 234.  

    23. [23]

      (23) Corti, C.W.; Holliday, R. J.; Thompson, D. T. Appl. Catal. A2005, 291, 253.  

    24. [24]

      (24) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal.1989, 115, 301.  

    25. [25]

      (25) An,W.; Pei, Y.; Zeng, X. C. Nano Lett. 2008, 8 (1), 195.

    26. [26]

      (26) Einaga, H.; Harada, M.; Futamura, S.; Ibusuki, T. J. Phys. Chem. B 2003, 107, 9290.  

    27. [27]

      (27) Vorontsov, A. V.; Savinov, E. N.; Barannik, G. B.; Troitsky, V.N.; Parmon, V. N. Catal. Today 1997, 39, 207.  

    28. [28]

      (28) Zhang, M.; Jin, Z. S.;Wang, S. B.; Zhang, S. L.; Zhang, Z. J.Acta Phys. -Chim. Sin. 2003, 19, 100.

    29. [29]

      (29) Valden, M.; Lai, X.; odman, D.W. Science 1998, 281, 1647.  

    30. [30]

      (30) Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.;Ichikawa, S.; Haruta, M. J. Catal. 2001, 202, 256.  

    31. [31]

      (31) Chen, M. S.; odman, D.W. Science 2004, 306, 252.  

    32. [32]

      (32) Chen, M.; Cai, Y.; Yan, Z.; odman, D.W. J. Am. Chem. Soc.2006, 128, 6341.  

    33. [33]

      (33) Vesborg, P. C. K.; In S. I.; Olsen, J. L.; Henriksen, T. R.;Abrams, B. L.; Hou, Y.; Kleiman-Shwarsctein, A.; Hansen, O.;Chorkendorff, I. J. Phys. Chem. C 2010, 114, 11162.

    34. [34]

      (34) Liu, Y. L.; You, C. R.; Li, Y.; He, T.; Zhang, X. Q.; Suo Z. H.Acta Phys. -Chim. Sin. 2010, 26, 2455. [刘玉良, 由翠荣, 李杨, 何涛, 张香芹, 索掌怀. 物理化学学报, 2010, 26, 2455.]

    35. [35]

      (35) Yu, J.;Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin.2008, 24, 1751. [俞俊,吴贵升,毛东森,卢冠忠.物理化学学报, 2008, 24, 1751.]  

    36. [36]

      (36) Ntho, T. A.; Anderson, J. A.; Scurrell, M. S. J. Catal. 2009, 261,94.

    37. [37]

      (37) Akita, T.; Okumura, M.; Tanaka, K.; Ohkuma, K.; Kohyama,M.; Koyanagi, T.; Date, M.; Tsubota, S.; Haruta, M. Surf. Interface Anal. 2005, 37, 265.  

    38. [38]

      (38) Meng, Q. Q.;Wang, J. G.; Xie, Q.; Li, X. N. J. Phys. Chem. C2010, 114, 9251.

    39. [39]

      (39) Meng, Q. Q.;Wang, J. G.; Xie, Q.; Dong, H. Q.; Li, X. N. Catal.Today 2011, 165, 145.

    40. [40]

      (40) Su, Y.; Meng, Q. Q.;Wang, J. G. J. Phys. Chem. C 2009, 113,21338.

    41. [41]

      (41) Delley, B. J. Chem. Phys. 1990, 92 (1), 508.

    42. [42]

      (42) Delley, B. J. Chem. Phys. 2000, 113, 7756.  

    43. [43]

      (43) Perfew, J. P.;Wang, Y. Phys . Rev. B. 1992, 45, 13244.  

    44. [44]

      (44) Yang, K. S.; Dai, Y.; Huang, B. B.; Whangbo, M. H. Chem. Mater. 2008, 20, 6528.  

    45. [45]

      (45) Le, L. C.; Ma, X. G.; Tang, H.;Wang, Y.; Li, X.; Jiang, J. J. Acta Phys. Sin. 2010, 59, 1314. [乐伶聪, 马新国, 唐豪, 王扬,李翔, 江建军. 物理学报, 2010, 59, 1314.]

    46. [46]

      (46) Yao, Y. B.; Xie, T.; Gao, Y. M. Handbook of Physical Chemistry; Shanghai Science and Technology Press: Shanghai,1985; pp 99-104. [姚允斌, 解涛, 高英敏. 物理化学手册.上海: 上海科学技术出版社, 1985: 99-104.]

    47. [47]

      (47) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.]

    48. [48]

      (48) Ghicov, A.; Schmidt, B.; Kunze, J.; Schmuki, P. Chem. Phys. Lett. 2007, 433, 323.

    49. [49]

      (49) Yang, K.; Dai, Y.; Huang, B. ChemPhysChem 2009, 10, 2327.  

    50. [50]

      (50) Lide, D. R. CRC Handbook of Chemistry and Physics, 76th ed.;CRC Press: New York, 1996.

    51. [51]

      (51) Pala, R. G. S.; Metiu, H. J. Phys. Chem. C 2007, 111, 8617.  

    52. [52]

      (52) Mars, P.; van Krevelen, P.W. Chem. Eng. Sci. 1954, 3, 41.  

    53. [53]

      (53) Chretien, S.; Metiu, H. Catal. Lett. 2006, 107, 143.  

    54. [54]

      (54) Mguig, B.; Calatayud, M.; Minot, C. J. Mol. Struct. -Theochem2004, 709, 73.  

    55. [55]

      (55) Wang, Z.; Zhao, Y.; Cui, X.; Tan, S.; Zhao, A.;Wang, B.; Yang,J.; Hou, J. G. J. Phys. Chem. C 2010, 114, 18222.  

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    13. [13]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    19. [19]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(1299)
  • Abstract views(3024)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return