Citation: GUO Xiao-Ming, MAO Dong-Sen, LU Guan-Zhong, WANG Song. Preparation of CuO-ZnO-ZrO2 by Citric Acid Combustion Method and Its Catalytic Property for Methanol Synthesis from CO2 Hydrogenation[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 170-176. doi: 10.3866/PKU.WHXB201228170 shu

Preparation of CuO-ZnO-ZrO2 by Citric Acid Combustion Method and Its Catalytic Property for Methanol Synthesis from CO2 Hydrogenation

  • Received Date: 29 August 2011
    Available Online: 3 November 2011

    Fund Project: 上海市科委科研项目(08520513600) (08520513600) 上海市教委重点学科建设项目(J51503) (J51503)上海应用技术学院科技发展基金(KJ2010-05)资助 (KJ2010-05)

  • CuO-ZnO-ZrO2 (CZZ) catalysts for methanol synthesis from CO2 hydrogenation were prepared by a citric acid combustion method. The combustion reactions were analyzed in terms of propellant chemistry and the combustion behavior was recorded by thermo-gravimetric/differential thermal analysis (TG-DTA). The as-prepared CZZ powders were investigated with X-ray diffraction (XRD), N2 adsorption, temperature-programmed reduction (TPR), and reactive N2O adsorption techniques and the catalytic activities were evaluated for methanol synthesis from CO2 hydrogenation. The results show that the influence of citric acid quantity on the physicochemical and catalytic properties of CZZ is subtle, and the reason is related to the characteristics of the combustion reaction. Furthermore, the relationship between the quantity of fuel (citric acid, urea, and glycine) and the properties of the catalysts was determined. The citric acid combustion method exhibits better controllability and it is a simple, fast, and valuable route for the preparation of the CZZ catalyst for methanol synthesis from CO2 hydrogenation.
  • 加载中
    1. [1]

      (1) Zhang, J. X.; Zhao, Y. Q.; Chen, J. X.;Wang, R. J.; Zhang, J. Y. Natural Gas Chem. Ind. 2004, 29, 43. [张建祥, 赵彦巧, 陈吉祥, 王日杰, 张继炎. 天然气化工, 2004, 29, 43.]

    2. [2]

      (2) Olah, G. A. Catal. Lett. 2004, 93, 1.  

    3. [3]

      (3) Arena, F.; Barbera,K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F. J. Catal. 2007, 249, 185.  

    4. [4]

      (4) S?oczyński, J.; Grabowski, R.; Koz?owska, A.; Olszewski, P.; Lachowska, M.; Skrzypek, J.; Stoch, J. Appl. Catal. A-Gen. 2003, 249, 129.  

    5. [5]

      (5) Ma, Y.; Sun, Q.;Wu, D.; Fan,W. H.; Zhang, Y. L.; Deng, J. F. Appl. Catal. A-Gen. 1998, 171, 45.  

    6. [6]

      (6) Raudaskoski, R.; Niemelä, M. V.; Keiski, R. L. Top. Catal. 2007, 45, 57.  

    7. [7]

      (7) S?oczyński, J.; Grabowski, R.; Koz?owska, A.; Olszewski, P.; Stoch, J.; Skrzypek, J.; Lachowska, M. Appl. Catal. A-Gen. 2004, 278, 11.  

    8. [8]

      (8) Zhuang, H. D.; Bai, S. F.; Liu, X. M.; Yan, Z. F. J. Fuel Chem. Technol. 2010, 38, 462. [庄会栋, 白绍芬, 刘欣梅, 阎子峰. 燃料化学学报, 2010, 38, 462.]  

    9. [9]

      (9) Zhu, P. F.; Li, J.; Zuo, S. F.; Zhou, R. X. Appl. Surf. Sci. 2008, 255, 2903.  

    10. [10]

      (10) Zhu, Y. Q.; Ma, Y. F.; Lin, X. P.;Wang, Z. H. Chin. J. Catal. 1998, 19, 393. [朱毅青, 马延风, 林西平, 王占华. 催化学报, 1998, 19, 393.]

    11. [11]

      (11) Cong, Y.; Tin, K. C.;Wang, N. B.; Xu, C. H.; Zhang, T.; Sun, X. Y.; Guan,W.; Liang, D. B. Chin. J. Catal. 2000, 21, 247. [从昱, 田金忠, 黄宁表, 徐长海, 张涛, 孙孝英, 关文, 梁东白. 催化学报, 2000, 21, 247.]

    12. [12]

      (12) Agrell, J.; Boutonnet, M.; Melian-Cabrera, I.; Fierro, J. L. G. Appl. Catal. A-Gen. 2003, 253, 201.  

    13. [13]

      (13) Wang, L. C.; Liu, Y. M.; Chen, M.; Cao, Y.; He, H. Y.;Wu, G. S.; Dai,W. L.; Fan, K. N. J. Catal. 2007, 246, 193.  

    14. [14]

      (14) Su, X. T.; Yan, Q. Z.; Ge, C. C. Progress Chem. 2005, 17, 430. [宿新泰, 燕青芝, 葛昌纯. 化学进展, 2005, 17, 430.]

    15. [15]

      (15) Patil, K. C.; Aruna, S. T.; Mimani, T. Curr. Opin. Solid State Mater. Sci. 2002, 6, 507.  

    16. [16]

      (16) Wang, Q. G.; Peng, R. R.; Xia, C. R.; Zhu,W.;Wang, H. T. Ceram. Int. 2008, 34, 1773.  

    17. [17]

      (17) Ribeiro, N. F. P.; Souza, M. M. V. M.; Schmal, M. J. Power Sources 2008, 179, 329.  

    18. [18]

      (18) Av uropoulos, G.; Ioannides, T. Appl. Catal. A-Gen. 2003, 244, 155.  

    19. [19]

      (19) Toniolo, J. C.; Lima, M. D.; Takimi, A. S.; Bergmann, C. P. Mater. Res. Bull. 2005, 40, 561.  

    20. [20]

      (20) Guo, X. M.; Mao, D. S.; Lu, G. Z.;Wang, S.;Wu, G. S. J. Catal. 2010, 271, 178.  

    21. [21]

      (21) Guo, X. M.; Mao, D. S.;Wang, S.;Wu, G. S.; Lu, G. Z. Catal. Commun. 2009, 10, 1661.  

    22. [22]

      (22) Chinchen, G. C.; Hay, C. M.; Vandervell, H. D.;Waugh, K. C. J. Catal. 1987, 103, 79.  

    23. [23]

      (23) Jain, S. R.; Adiga, K. C.; Pai Verneker, V. R. Combust. Flame 1981, 40, 71.  

    24. [24]

      (24) Dean, J. A. Lange ' s Handbook of Chemistry, 13th ed.; McGraw-Hill: New York, 1985; pp 9-14, 9-19, 9-25, 9-66, 9-67, 9-93.

    25. [25]

      (25) Zhang, Y. P.; Fei, J. H.; Yu, Y. M.; Zheng, X. M. Energy Convs. Manage. 2006, 47, 3360.  

    26. [26]

      (26) Melián-Cabrera, I.; López Granados, M.; Fierro, J. L. G. J. Catal. 2002, 210, 273.  

    27. [27]

      (27) Lin, M. G.; Yang, C.;Wu, G. S.;Wei,W.; Li,W. H.; Shan, Y. K.; Sun, Y. H.; He, M. Y. Chin. J. Catal. 2004, 25, 591. [林明桂, 杨成, 吴贵升, 魏伟, 李文怀, 单永奎, 孙予罕, 何鸣元. 催化学报, 2004, 25, 591.]

    28. [28]

      (28) Yang, Z. Q.; Mao, D. S.; Guo, Q. S.; Gu, L. Acta Phys. -Chim. Sin. 2010, 26, 3278. [杨志强, 毛东森, 郭强胜, 顾蕾. 物理化学学报, 2010, 26, 3278]

    29. [29]

      (29) Purohit, R. D.; Sharma, B. P.; Pillai, K. T.; Tyagi, A. K. Mater. Res. Bull. 2001, 36, 2711.  

    30. [30]

      (30) Andrade de Jesus, F. A.; Silva, R. S.; Hernandes, A. C.; Macedo, Z. S. J. Eur. Ceram. Soc. 2009, 29, 125.  

    31. [31]

      (31) Chinchen, G. C.;Waugh, K. C.; Whan, D. A. Appl. Catal. 1986, 25, 101.  

    32. [32]

      (32) Sun, Q.; Zhang, Y. L.; Chen, H. Y.; Deng, J. F.;Wu, D.; Chen, S. Y. J. Catal. 1997, 167, 92.  

    33. [33]

      (33) Zhang, Z. L.; Zhang, Y. X.; Mu, Z. G.; Yu, P. F.; Ni, X. Z.; Wang, S. L.; Zheng, L. S. Appl. Catal. B-Enviro. 2007, 76, 335.  

    34. [34]

      (34) Deganello, F.; Marcì, G.; Deganello, G. J. Eur. Ceram. Soc. 2009, 29, 439.  

    35. [35]

      (35) Zhang, J. R.; Gao, L. Mater. Lett. 2004, 58, 2730.  

    36. [36]

      (36) Singh, K. A.; Pathak, L. C.; Roy, S. K. Ceram. Int. 2007, 33, 1463.  

    37. [37]

      (37) Chandramouli, V.; Anthonysamy, S.; Vasudeva Rao, P. R. J. Nucl. Mater. 1999, 265, 255.  

    38. [38]

      (38) Li, F.; Hu, K. A.; Li, J. L.; Zhang, D.; Chen, G. J. Nucl. Mater. 2002, 300, 82.  

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    3. [3]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    4. [4]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    5. [5]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    16. [16]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

Metrics
  • PDF Downloads(2720)
  • Abstract views(2957)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return