Citation: XIA Da-Hai, SONG Shi-Zhe, WANG Ji-Hui, BI Hui-Chao, HAN Zhe-Wen. Corrosion Behavior of Tinplates in a Functional Beverage[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 121-126. doi: 10.3866/PKU.WHXB201228121 shu

Corrosion Behavior of Tinplates in a Functional Beverage

  • Received Date: 29 September 2011
    Available Online: 28 October 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB610500)资助 (973) (2011CB610500)

  • In this paper, the corrosion process of a tinplate in a functional beverage was investigated using electrochemical impedance spectroscope (EIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), scanning probe microscopy (SPM), and X-ray photoelectron spectroscopy (XPS), and a corrosion mechanism is proposed. We conclude that an increase in the impedance modulus at low frequency is due to the corrosion product forming on the surface of the tinplate over the first 31 h. With an increase in the immersion time a decrease in the impedance modulus at low frequency is due to the detachment of the corrosion product and the corrosion of the carbon steel substrate. X-ray photoelectron spectroscopy (XPS) results show that the corrosion product is mainly composed of a Sn(II)/Sn(IV) citrate complex or an Fe(III) citrate complex. Furthermore, the corrosion product film is first enriched with Sn and then enriched with Fe after immersion in functional beverage for 24 d. We propose that the tinplate is mainly corroded by the organic acids that exist in functional beverages.
  • 加载中
    1. [1]

      (1) Huang, X. Q.; Li, N.; Cao, L. X.; Zheng, H. Mater. Lett. 2008,62, 466.  

    2. [2]

      (2) Xia, D.;Wang, J.; Song, S.; Zhong, B.; Han, Z. Advanced Materials Research 2011, 233 -235, 1747.

    3. [3]

      (3) Toniolo, R.; Pizzariello, A.; Tubaro, F.; Susmel, S.; Dossi, N.;Bontempelli, G. J. Appl. Electrochem. 2009, 39, 979.  

    4. [4]

      (4) Patrick, G.W. Anti-Corros. Method. M. 1976, 23 (6), 9.

    5. [5]

      (5) Blunden, S.;Wallace, T. Food Chem. Toxicol. 2003, 41, 1651.  

    6. [6]

      (6) Boogaard, P. J.; Boisset, M.; Blunden, S.; Davies, S.; Ong, T. J.;Taverne, J. P. Food Chem. Toxicol. 2003, 41, 1663.  

    7. [7]

      (7) Huang, B. X.; Tornatore, P.; Li, Y. S. Electrochim. Acta 2000,46, 671.

    8. [8]

      (8) Sasaki, T.; Kanagawa, R.; Ohtsuka, T.; Miura, K. Corrosion Sci.2003, 45, 847.  

    9. [9]

      (9) Tselesh, A.S. Thin Solid Films 2008, 516, 1037.  

    10. [10]

      (10) Refaey, S. A. M.; Schwitzgebel, G. Appl. Surf. Sci. 1998, 135

    11. [11]

      (1-4), 243.

    12. [12]

      (11) Jafarian, M.; bal, F.; Danaee, I.; Biabani, R.; Mahjani, M. G.Electrochim. Acta 2008, 53, 4528.  

    13. [13]

      (12) El-Sherbini, E. E. F.; Abd-El-Wahab, S. M.; Amin, M. A.;Deyab, M. A. Corrosion Sci. 2006, 48, 1885.  

    14. [14]

      (13) Almeida, C. M. V. B.; Giannetti, B. F. Mater. Chem. Phys. 2001,69 (1-3), 261.

    15. [15]

      (14) Gervasi, C. A.; Palacios, P. A.; Bimbi, M. V. F.; Alvarez, P. E.J. Electroanal. Chem. 2010, 639 (1-2), 141.

    16. [16]

      (15) Zumelzua, E.; Cabezasb, C. Mater. Charact. 1995, 34, 143.  

    17. [17]

      (16) Kontominas, M. G.; Prodromidis, M. I.; Paleolo s, E. K.;Badeka, A. V.; Georgantelis, D. Food Chem. 2006, 98, 225.  

    18. [18]

      (17) Haanappel, V. A. C.; Stroosnijder, M. F. Corrosion 2001, 57,557.  

    19. [19]

      (18) Doherty, M.; Sykes, J. M. Corrosion Sci. 2008, 50, 2755.  

    20. [20]

      (19) Liu, X.; Xiong, J.; Lv, Y.; Zuo, Y. Prog. Org. Coat. 2009, 64,497.  

    21. [21]

      (20) Zhang,W.;Wang, J.; Zhao, Z. Y.; Jiang, J. Chem. J. Chin. Univ.2009, 30, 762. [张伟, 王佳, 赵增元, 姜晶. 高等学校化学学报, 2009, 30, 762.]

    22. [22]

      (21) Rezaei, F.; Sharif, F.; Sarabi, A. A.; Kasiriha, S. M.; Rahmanian,M.; Akbarinezhad, E. J. Coat. Technol. Res. 2010, 7, 209.  

    23. [23]

      (22) Zhu, Y. F.; Xiong, J. P.; Tang, Y. M.; Zuo, Y. Prog. Org. Coat.2010, 69, 7.  

    24. [24]

      (23) Betova, I.; Bojinov, M.; Karastoyanov, V.; Kinnunen, P.; Saario,T. Electrochim. Acta 2010, 55, 6163.  

    25. [25]

      (24) Huang, X. Q.; Li, N.;Wang, H. Y.; Sun, H. X.; Sun, S. S.;Zheng, H. Thin Solid Films 2008, 516, 1037.  

    26. [26]

      (25) Graat, P. C. J.; Somers, M. A. J. Appl. Surf. Sci. 1996, 100-101,36.

    27. [27]

      (26) Abd El Rehim, S. S.; Hassan, H. H.; Mohamed, N. F. Corrosion Sci. 2004, 46, 1071.  

  • 加载中
    1. [1]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    3. [3]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    4. [4]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    11. [11]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    12. [12]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    17. [17]

      Zongyuan Chen ChunSheng Shi Yiwen Li Ganlin Zu Qiang Jin Haishan Wang Fujun Wang Dekun Yan Zhijun Guo Wangsuo Wu . Measurement of Uranium Isotopes in Environmental Water Samples by Alpha-Spectroscopy: Design of an Undergraduate Radiochemistry Experiment. University Chemistry, 2025, 40(4): 353-358. doi: 10.12461/PKU.DXHX202406103

    18. [18]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    19. [19]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(792)
  • Abstract views(2539)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return