Citation: GAO Li-Xia, WANG Li-Na, QI Tao, YU Jiang. Preparation of Ni and Ni-Al Alloys from 2AlCl3/Et3NHCl Ionic Liquid by Electrodeposition[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 111-120. doi: 10.3866/PKU.WHXB201228111 shu

Preparation of Ni and Ni-Al Alloys from 2AlCl3/Et3NHCl Ionic Liquid by Electrodeposition

  • Received Date: 12 August 2011
    Available Online: 8 November 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2007CB613501) (973) (2007CB613501) 中国科学院知识创新项目(082814) (082814) 国家自然科学基金(21076019) (21076019) 中央高校基本科研业务费专项资金(ZY1130) (ZY1130)中国博士后科学基金项目(2011M500224)资助 (2011M500224)

  • Nickel and nickel-aluminum alloy were successfully electrodeposited on Cu electrodes from 2: 1 molar ratio aluminum chloride (AlCl3)/triethylamine hydrochloride (Et3NHCl) ionic liquids containing Ni2+ by constant potential electrolysis. The nucleation mechanism of nickel electrodeposition on Cu was investigated by cyclic voltammograms and chronoamperometry. The mechanism and the influence of experimental conditions on the current efficiency and the surface morphology of nickel-aluminum alloy electrodeposition on Cu electrodes were studied. The electrodeposition of nickel on Cu electrodes was controlled by three-dimensional instantaneous nucleation with diffusion-controlled growth. The Ni-Al alloy composition did not become independent of the deposition charge until at least 3.0 C had been accumulated. The mechanism of Ni-Al alloy formation appears to involve the underpotential deposition of aluminum on the developing nickel deposit and alloy formation must be kinetically hindered because the aluminum content is always less than that predicted from theoretical considerations. The Ni-Al alloy that was obtained on the Cu electrode was dense, continuous, and well adherent when the deposition current was small and stationary. If these conditions were not met, a nodule surface morphology appeared. The current efficiency of the Ni-Al alloy electrodeposition was greater than 90% and the deposition composition was close to that of the Ni3Al alloy.
  • 加载中
    1. [1]

      (1) Wu, Z. J.;Wu, X. F.; Yang, J. Machinist Metal Forming 2009, No. 18, 23. [吴朝军, 吴晓峰, 杨杰. 金属加工(热加工), 2009, No. 18, 23.]

    2. [2]

      (2) Yin, C. L.; Yu, Y. G.; Zeng, K. L.; Ren, X. J. The Chinese Journal of Process Engineering 2004, 4, 156. [尹春雷, 于月光, 曾克里, 任先京. 过程工程学报, 2004, 4, 156.]

    3. [3]

      (3) Yu, Y. G.; Zeng, K. L.; Song, X. J.; Xu, G. G.; Chen, S. Y.; Xie, J. G. Al-Coated-Ni Composite Powder Coated by Ultramicroor- Nano Al Powder and its Preparation Method. CN. Patent 02100588.5, 2005-07-06. [于月光, 曾克里, 宋希剑, 许根国, 陈舒予, 谢建刚. 超微或纳米铝粉包覆的铝包镍复合粉末及其制备方法: 中国, 02100588.5[P]. 2005-07-06.]

    4. [4]

      (4) Moffat, T. P. J. Electrochem. Soc. 1994, 141, L115.

    5. [5]

      (5) Uchida, J.; Tsuda, T.; Yamamoto, Y.; Seto, H.; Abe, M.; Shibuya, A. ISIJ Int. 1993, 33, 1029.  

    6. [6]

      (6) Moffat, T. P. J. Electrochem. Soc. 1994, 141, 3059.  

    7. [7]

      (7) Stafford, G. R.; Haarberg, G. M. Plasmas & Ions 1999, 2, 35.  

    8. [8]

      (8) Stafford, G. R. J. Electrochem. Soc. 1994, 141, 945.  

    9. [9]

      (9) Ueda, M.; Kigawa, H.; Ohtsuka, T. Electrochim. Acta 2007, 52, 2515.  

    10. [10]

      (10) Zhu, Q.; Hussey, C. L.; Stafford, G. R. J. Electrochem. Soc. 2001, 148, C88.

    11. [11]

      (11) Carlin, R. T.; Trulove, P. C.; DeLong, H. C. J. Electrochem. Soc. 1996, 143, 2747.  

    12. [12]

      (12) Zell, C. A.; Freyland,W. Langmuir 2003, 19, 7445.  

    13. [13]

      (13) Mitchell, J. A.; Pitner,W. R.; Hussey, C. L.; Stafford, G. R. J. Electrochem. Soc. 1996, 143, 3448.  

    14. [14]

      (14) Ali, M. R.; Nishikata, A.; Tsuru, T. Electrochim. Acta 1997, 42, 1819.  

    15. [15]

      (15) Ali, M. R.; Nishikata, A.; Tsuru, T. Electrochim. Acta 1997, 42, 2347.  

    16. [16]

      (16) Tierney, B. J.; Pitner,W. R.; Mitchell, J. A.; Hussey, C. L.; Stafford, G. R. J. Electrochem. Soc. 1998, 145, 3110.  

    17. [17]

      (17) Zhu, Q.; Hussey, C. L. J. Electrochem. Soc. 2001, 148, C395.

    18. [18]

      (18) Tsuda, T.; Nohira, T.; Ito, Y. Electrochim. Acta 2002, 47, 2817.  

    19. [19]

      (19) Tsuda, T.; Hussey, C. L.; Stafford, G. R. J. Electrochem. Soc. 2004, 151, C379.

    20. [20]

      (20) De Long, H. C.; Mitchell, J. A.; Trulove, P. C. High Temp. Mater. Processes (New York) 1998, 2, 507.

    21. [21]

      (21) Aravinda, C. L.; Mukhopadhyay, I.; Freyland,W. Phys. Chem. Chem. Phys. 2004, 6, 5225.

    22. [22]

      (22) Pradhan, D.; Reddy, R.; Lahiri, A. Metall. Mater. Trans. B 2009, 40, 114.  

    23. [23]

      (23) Tsuda, T.; Hussey, C. L.; Stafford, G. R.; Kongstein, O. J. Electrochem. Soc. 2004, 151, C447.

    24. [24]

      (24) Tsuda, T.; Arimoto, S.; Kuwabata, S.; Hussey, C. L. J. Electrochem. Soc. 2008, 155, D256.

    25. [25]

      (25) Tsuda, T.; Hussey, C. L.; Stafford, G. R. J. Electrochem. Soc. 2005, 152, C620.

    26. [26]

      (26) Gao, L. X.;Wang, L. N.; Qi, T.; Li, Y. P.; Chu, J. L.; Qu, J. K. Acta Physico-Chimica Sinica 2008, 24, 939. [高丽霞, 王丽娜, 齐涛, 李玉平, 初景龙, 曲景奎. 物理化学学报, 2008, 24, 939.]  

    27. [27]

      (27) Gale, R. J.; Gilbert, B.; Osteryoung, R. A. Inorg. Chem. 1979, 18, 2723.  

    28. [28]

      (28) Lee, J. J.; Miller, B.; Shi, X.; Kalish, R.; Wheeler, K. A. J. Electrochem. Soc. 2000, 147, 3370.  

    29. [29]

      (29) Ali, M. R.; Nishikata, A.; Tsuru, T. J. Electroanal. Chem. 2001, 513, 111.  

    30. [30]

      (30) u, S. P.; Sun, I.W. Electrochim. Acta 2008, 53, 2538.  

    31. [31]

      (31) Pitner,W. R.; Hussey, C. L.; Stafford, G. R. J. Electrochem. Soc. 1996, 143, 130.  

    32. [32]

      (32) Deng, M. J.; Sun, I.W.; Chen, P. Y.; Chang, J. K.; Tsai,W. T. Electrochim. Acta 2008, 53, 5812.  

    33. [33]

      (33) Mann, O.; Freyland,W. J. Phys. Chem. C 2007, 111, 9832.  

    34. [34]

      (34) Kaufman, L. CALPHAD; Pergamon Press: New York, 1977; Vol. 1, pp 1-89.

    35. [35]

      (35) Lupis, C. H. P. Chemical Thermodynamics of Materials, North- Holland: New York, 1983; p 581.

    36. [36]

      (36) Shi, L. Alloy Thermodynamics, 1st ed.; China Machine Press: Beijing, 1992; pp 285-348. [石霖. 合金热力学, 第一版; 北京: 机械工业出版社, 1992: 285-348.]

    37. [37]

      (37) Ye, D. L. Handbook of Thermodynamic Data for Applied Inorganic Material, 2nd ed.; Metallurgical Industry Press: Beijing, 2002; pp 43-46, 270-272. [叶大伦. 实用无机物热力学数据手册, 第二版; 北京: 冶金工业出版社, 2002: 43-46, 270-272.]

  • 加载中
    1. [1]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    2. [2]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    3. [3]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    6. [6]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    7. [7]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    8. [8]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    15. [15]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    18. [18]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    19. [19]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    20. [20]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

Metrics
  • PDF Downloads(953)
  • Abstract views(2431)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return