Citation: BAO Shi-Long, CHEN Wang-Hua, CHEN Li-Ping, GAO Hai-Su, LÜ Jia-Yu. Identification and Thermokinetics of Autocatalytic Exothermic Decomposition of 2,4-Dinitrotoluene[J]. Acta Physico-Chimica Sinica, ;2013, 29(03): 479-485. doi: 10.3866/PKU.WHXB201212141 shu

Identification and Thermokinetics of Autocatalytic Exothermic Decomposition of 2,4-Dinitrotoluene

  • Received Date: 28 September 2012
    Available Online: 14 December 2012

    Fund Project: 国家自然科学基金(51204099)资助项目 (51204099)

  • The thermal stability and autocatalytic decomposition of 2,4-dinitrotoluene (2,4-DNT) is investigated under dynamic and isothermal conditions using differential scanning calorimetry (DSC). The temperature range of initial exothermic temperature (T0) is 272.4-303.5℃, and its decomposition enthalpy (ΔHd) is about 2.22 kJ·g-1. An identification method based on a numerical simulation technique from the Swiss Institute for the Promotion of Safety and Security (Swiss method) is used to determine the characteristic parameters of the decomposition reaction, revealing that the decomposition of 2,4-DNT is potentially autocatalytic. The Malek method is used to determine the most probable mechanism function and kinetic parameters of 2,4-DNT decomposition. The Sestak-Berggren model with two parameters is suitable to describe the autocatalytic decomposition of 2,4-DNT, which is consistent with the results of the Swiss method and isothermal experimental results. Isothermal DSC experiments confirmed that the decomposition of 2,4-DNT is autocatalytic.

  • 加载中
    1. [1]

      (1) Sun, J. H.; Lu, S. X.; Sun, Z. H. Chin. Saf. Sci. J. 2003, 13 (4), 44.[孙金华, 陆守香, 孙占辉. 中国安全科学学报, 2003, 13 (4), 44.]

    2. [2]

      (2) Wu, Z. Z.; Zhang, S. Z.; Zhang, Y.; Shi, C.; Liu, N.; Yang, G. L.J. Saf. Sci. Tech. 2011, 7 (7), 5. [吴宗之, 张圣柱, 张悦, 石超, 刘宁, 杨国梁. 中国安全生产科学技术, 2011, 7 (7), 5.]

    3. [3]

      (3) Zhao, L. J.;Wu, P.; Xu, K. Chin. Saf. Sci. J. 2009, 19 (7), 165.[赵来军, 吴萍, 许科. 中国安全科学学报, 2009, 19 (7), 165.]

    4. [4]

      (4) Stoessel, F. Thermal Safety of Chemical Process: RiskAssessment and Process Design; Science Press: Beijing, 2009;pp 56, 271-287; translated by Chen,W. H., Peng, J. H., Chen,L. P. [Stoessel, F. 化工工艺热安全, 风险评估与工艺设计.陈网桦, 彭金华, 陈利平译. 北京: 科学出版社, 2009: 56,271-287.]

    5. [5]

      (5) Guo, M. C.; Chu, S. J.; Feng, C. G.; He, G. B. Explo. Sho. Wav.1995, 15 (2), 107. [郭明朝, 楚士晋, 冯长根, 何光斌. 爆炸与冲击, 1995, 15 (2), 107.]

    6. [6]

      (6) Jia, H. P.; Bai, M. L. Acta Armamentarii 1993, No. 4, 53. [贾会平, 白木兰. 兵工学报, 1993, No. 4, 53.]

    7. [7]

      (7) Zhang, H.; Xia, Z. M.; Guo, P. J.; Hu, R. Z.; Gao, S. L.; Ning,B. K.; Fang, Y.; Shi, Q. Z.; Liu, R. J. Hazard. Mater. 2002, 94 (3), 205. doi: 10.1016/S0304-3894(02)00118-8

    8. [8]

      (8) Hu, R. Z.; Guo, P. J.; Song, J. R.; Zhang, H.; Xia, Z. M.; Ning,B. K.; Fang, Y.; Shi, Q. Z.; Liu, R.; Lu, G. E.; Jiang, J. Y. Chin.J. Explo. Prop. 2003, 26 (2), 53. [胡荣祖, 郭鹏江, 宋纪蓉,张海, 夏志明, 宁斌科, 房艳, 史启祯, 刘蓉, 路桂娥,江劲勇. 火炸药学报, 2003, 26 (2), 53.]

    9. [9]

      (9) Hu, R. Z.; Ning, B. K.; Yang, Z. Q.; Song, J. R.; Gao, S. L.; Shi,Q. Z.; Lu, G. E.; Jiang, J. Y. Chin. J. Explo. Prop. 2004, 27 (2),67. [胡荣祖, 宁斌科, 杨正权, 宋纪蓉, 高胜利, 史启祯, 路桂娥, 江劲勇. 火炸药学报, 2004, 27 (2), 67.]

    10. [10]

      (10) Ning, B. K.; Hu, R. Z.; Zhang, H.; Xia, Z. M.; Guo, P. J.; Liu,R.; Lu, G. E.; Jiang, J. Y. Thermochimica Acta 2004, 416 (1-2),47. doi: 10.1016/j.tca.2003.11.029

    11. [11]

      (11) Zhao, F. Q.; Guo, P. J.; Hu, R. Z.; Zhang, H.; Xia, Z. M.; Gao,H. X.; Chen, P.; Luo, Y.; Zhang, Z. Z.; Zhou, Y. S.; Zhao, H. A.;Gao, S. L.; Shi, Q. Z.; Lu, G. E.; Jiang, J. Y. Chin. J. Chem.2006, 24 (5), 631. [赵凤起, 郭鹏江, 胡荣祖, 张海, 夏志明,高红旭, 陈沛, 罗阳, 张志忠, 周彦水, 赵宏安, 高胜利,史启祯, 路桂娥, 江劲勇. 化学学报, 2006, 24 (5), 631.]

    12. [12]

      (12) Gao, H. X.; Zhang, H.; Zhao, F. Q.; Hu, R. Z.; Ma, H. X.; Xu,K. Z.; Yi, J. H.; Xu, S. Y.; Gao, Y. Acta Phys. -Chim. Sin. 2008,24 (3), 453. [高红旭, 张海, 赵凤起, 胡荣祖, 马海霞, 徐抗震, 仪建华, 徐司雨, 高茵. 物理化学学报, 2008, 24 (3),453.] doi: 10.3866/PKU.WHXB20080318

    13. [13]

      (13) Ou, X. R.; Zhang, C. M. J. Occu. Saf. Heal. 2005, 15 (2), 159.[欧新荣, 张承明. 劳工安全卫生研究季刊, 2005, 15 (2), 159.]

    14. [14]

      (14) Chen, J. R.; Cheng, S. Y.; Yuan, M. H.; Kossoy, A. A.; Shu, C.M. J. Therm. Anal. Calorim. 2009, 96 (3), 751. doi: 10.1007/s10973-009-0023-6

    15. [15]

      (15) Tanaka, G.;Weatherford, C. Int. J. Quantum Chem. 2008, 108 (15), 2924. doi: 10.1002/qua.v108:15

    16. [16]

      (16) nzalez, A. C.; Lamon, C.W.; McMillen, D. F.; lden, D. M.J. Phys. Chem. 1985, 89 (22), 4809. doi: 10.1021/j100268a030

    17. [17]

      (17) Neri, G.; Musolino, M. G.; Milone, C.; Pietropaolo, D.; Galvagno,S. Applied Catalysis A: General 2001, 208 (1), 307. doi: 10.1016/S0926-860X(00)00717-1

    18. [18]

      (18) Lenz, A.; Pohl, A.; Ojamae, L.; Persson, P. Int. J. QuantumChem. 2012, 112 (7), 1852. doi: 10.1002/qua.v112.7

    19. [19]

      (19) Dontsova, K. M.; Pennington, J. C.; Hayes, C.; Šimunek, J.;Williford, C.W. Chemosphere 2009, 77 (4), 597. doi: 10.1016/j.chemosphere.2009.05.039

    20. [20]

      (20) Wang, S. X.; Tan, Z. C.; Shi, Q.; Di, Y. Y.; Zhang, H. T.; Xu, F.;Sun, L. X.; Zhang, T. J. Chem. Thermodynamics 2005, 37 (4),349. doi: 10.1016/j.jct.2004.09.018

    21. [21]

      (21) Zeman, S. Thermochimica Acta 1997, 290 (2), 199. doi: 10.1016/S0040-6031(96)03078-X

    22. [22]

      (22) Chervina, S.; Bodman, G. T. Process Saf. Prog. 2002, 16 (2), 94

    23. [23]

      (23) Bou-Diab, L.; Fierz, H. J. Hazard. Mater. 2002, 93 (1), 137. doi: 10.1016/S0304-3894(02)00044-4

    24. [24]

      (24) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.; Shi, Q. Z.; Zhang, T. L.;Zhang, J. J. Thermal Analysis Kinetics, 2nd ed.; Science Press:Beijing, 2008; pp 149-165. [胡荣祖, 高胜利, 赵凤起, 史启祯, 张同来, 张建军. 热分析动力学(第二版). 北京: 科学出版社, 2008: 149-165.]

    25. [25]

      (25) Tang, Z.; Ren, Y.; Yang, L.; Zhang, T. L.; Qiao, X. J.; Zhang, J.G.; Zhou, Z. N. Chin. J. Explo. Prop. 2011, 34 (1), 19.[汤崭, 任雁, 杨利, 张同来, 乔小晶, 张建国, 周遵宁.火炸药学报, 2011, 34 (1), 19.]

    26. [26]

      (26) Zhou, H. J.; Yin, G. Q.; Huang, D. Y.; Li, C. J.; Guo, Q. B.Insulating Materials 2011, 44 (6), 48. [周红军, 尹国强,黄东莹, 李翠金, 郭清兵. 绝缘材料, 2011, 44 (6), 48.]

    27. [27]

      (27) Sun,W. B.; Zhang, C. C. J. Wuhan Univ. Tech. 2009, 31 (6),28. [孙文兵, 张超灿. 武汉理工大学学报, 2009, 31 (6), 28.]


  • 加载中
    1. [1]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    2. [2]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    3. [3]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    4. [4]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    9. [9]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    10. [10]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    11. [11]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Wenhui Li Changshuo Zhu Xinyu Cui Chenfei Zhao Lina Qiu Yan Li Chuandong Wu Min Yang Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062

    13. [13]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    16. [16]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    19. [19]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    20. [20]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

Metrics
  • PDF Downloads(1129)
  • Abstract views(1069)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return