Citation: WANG Feng, YAN Shu-Jun, YONG Xiao-Jing, LUO Chun-Tao, ZHANG Qing, WEN Peng-Yu, NG Yan-Jun, DOU Tao. Effects of Na+ in Dilution Steam and Coke Deposition on Catalytic Performance of Methanol-to-Propylene Catalysts[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 358-364. doi: 10.3866/PKU.WHXB201211143 shu

Effects of Na+ in Dilution Steam and Coke Deposition on Catalytic Performance of Methanol-to-Propylene Catalysts

  • Received Date: 12 September 2012
    Available Online: 14 November 2012

    Fund Project: 国际科技与交流专项(2010DFB40440) (2010DFB40440) 宁夏回族自治区科技攻关计划(年产50 万吨煤基聚丙烯装置工业运行及下游产业关键技术研究)资助项目 (年产50 万吨煤基聚丙烯装置工业运行及下游产业关键技术研究)

  • The effects of Na+ in dilution steam and coke deposition on the physicochemical properties andcatalytic performance of ZSM-5 catalysts for the methanol-to-propylene (MTP) reaction were investigated.The deactivated and regenerated catalysts were characterized by means of X-ray diffraction (XRD),scanning electron microscopy (SEM), X-ray fluorescence (XRF) spectrum, nitrogen adsorption/desorption,temperature-programmed desorption of ammonia (NH3-TPD), and thermogravimetry (TG). Their catalyticperformance for MTP reaction was tested in a continuous flow fixed-bed micro-reactor at 470℃, 101325Pa, and with methanol weight hourly space velocity (WHSV) in the range of 1.0-3.0 h-1. The resultsindicated that the catalyst crystal structure and morphology was not significantly altered after 970 h onstream. In the MTP reaction, Na+ in the dilution steam can easily enter the pore channels of the catalyst,and partially replace H protons, thereby gradually decreasing the amount of acidity and acid strength of thecatalyst, which eventually causes deactivation. In addition, coke deposits on the catalyst surface blocking its micropores are the main reason for deactivation of the MTP catalyst. Coke deposits are mostlyeliminated through the burning charcoal regeneration process. The effect of framework dealumination fromthe catalyst by steam in the MTP process is slow but more serious. Through regeneration and ionexchange process, the catalytic activity of the deactivated catalyst can be fully restored. The conversion ofmethanol is consistently above 99%, and propylene selectivity is greater than 46% even after 470 h onstream. With increasing reaction time, the propylene selectivity gradually increases, while ethyleneselectivity gradually decreases.

  • 加载中
    1. [1]

      (1) Hu, S.; Zhang, Q.; Xia, Z.; ng, Y. J.; Xu, J.; Deng, F.; Dou, T.Acta Phys. -Chim. Sin. 2012, 28, 2705. [胡思, 张卿,夏至, 巩雁军, 徐君, 邓风, 窦涛. 物理化学学报,2012, 28, 2705.] doi: 10.3866/PKU.WHXB201207171

    2. [2]

      (2) Mao, D. S.; Guo, Q. S.; Meng, T. Acta Phys. -Chim. Sin. 2010,26, 338. [毛东森, 郭强胜, 孟涛. 物理化学学报, 2010, 26,338.] doi: 10.3866/PKU.WHXB20100208

    3. [3]

      (3) Wang, F.; Zhang, Q.; Hu, S.; ng, Y. J.; Dou, T. Industrial Catalysis 2012, 20, 17. [王峰, 张卿, 胡思, 巩雁军,窦涛. 工业催化, 2012, 20, 17.]

    4. [4]

      (4) Sun, C.; Du, J. M.; Liu, J.; Yang, Y. S.; Ren, N.; Shen,W.; Xu,H. L.; Tang, Y. Chem. Commun. 2010, 46, 2671. doi: 10.1039/b925850g

    5. [5]

      (5) Lee, Y. J.; Kim, Y.W.; Viswanadham, N.; Jun, K.W.; Bae, J.W.Appl. Catal. A: Gen. 2010, 374, 18. doi: 10.1016/j.apcata.2009.11.019

    6. [6]

      (6) Firoozi, M.; Baghalha, M.; Asadi, M. T. Catal. Commun. 2009,10, 1582. doi: 10.1016/j.catcom.2009.04.021

    7. [7]

      (7) Zhang, S. H.; Zhang, B. L.; Gao, Z. X.; Han, Z. Y. Reac. Kinet. Mech. Catal. 2010, 99, 447.

    8. [8]

      (8) Liu, J.; Zhang, C. X.; Shen, Z. H.; Hua,W. M.; Tang, Y.; Shen,W.; Yue, Y. H.; Xu, H. L. Catal. Commun. 2009, 10, 1506. doi: 10.1016/j.catcom.2009.04.004

    9. [9]

      (9) Mokrani, T.; Scurrell, M. Catal. Rev. -Sci. Eng. 2009, 51, 1. doi: 10.1080/01614940802477524

    10. [10]

      (10) Valle, B.; Alonso, A.; Atutxa, A. G.; Gayubo, J. B. Catal. Today2005, 106, 115.

    11. [11]

      (11) Vedrine, J. C.; Auroux, A.; Dejaifve, P.; Ducarme, V.; Hoser, H.;Zhou, S. J. Catal. 1982, 73, 147. doi: 10.1016/0021-9517(82)90089-6

    12. [12]

      (12) Kaarsholm, M.; Joensen, F.; Nerlov, J.; Cennib, R.; Chaoukia,J.; Patiencea, G. S. Chem. Eng. Sci. 2007, 62, 5527. doi: 10.1016/j.ces.2006.12.076

    13. [13]

      (13) Zhao, T. S.; Takemoto, T.; Tsubaki, N. Catal. Commun. 2006, 7,647. doi: 10.1016/j.catcom.2005.11.009

    14. [14]

      (14) Bhatia, S.; Beltramini. J.; Do, D. D. Catal. Rcv. -Sci. Eng. 1989,90, 481.

    15. [15]

      (15) Langner, B. E. Ind. Eng. Chem. Pro. Des. Dev. 1981, 20, 326.doi: 10.1021/i200013a023

    16. [16]

      (16) Bibby, D. M.; Milestone, N. B.; Patterson, J. E.; Aldridge, L. P.J. Catal. 1986, 97, 493. doi: 10.1016/0021-9517(86)90020-5

    17. [17]

      (17) McLellan, G. D.; Howe, R. F.; Parker, L. M.; Bibby, D. M.J. Catal. l986, 99, 486.

    18. [18]

      (18) Wen, P. Y.; Mei, C. S.; Liu, H. X.; Yang,W. M.; Chen, Q. L.Acta Petrolei Sinica (Petroleum Processing Section) 2008, 24,446. [温鹏宇, 梅长松, 刘红星, 杨为民, 陈庆龄. 石油学报(石油加工), 2008, 24, 446.]

    19. [19]

      (19) Sexton, B. A.; Hughes, A. E.; Bibby, D. M. J. Catal. 1988, 109,126. doi: 10.1016/0021-9517(88)90190-X

    20. [20]

      (20) Lee, K. Y.; Lee, H. K.; Ihm, S. K. Top. Catal. 2010, 53, 247. doi: 10.1007/s11244-009-9412-0

    21. [21]

      (21) Jiang, Y.; Liang, J.; Zhao, S. Q. Chin. J. Catal. 1994, 15, 463.[蒋毅, 梁鹃, 赵素琴. 催化学报, 1994, 15, 463.]

    22. [22]

      (22) Wang, X. Q.;Wang, X. S. Acta Petrolei Sinica (Petroleum Processing Section) 1994, 10, 38. [王学勤, 王祥生. 石油学报(石油加工), 1994, 10, 38.]

    23. [23]

      (23) Lu, M.; Sun, H. M.; Yang,W. M. Acta Petrolei Sinica (Petroleum Processing Section) 2001, 17, 59. [陆铭, 孙洪敏, 杨为民. 石油学报(石油加工), 2001, 17, 59.]

    24. [24]

      (24) Bjørgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.;Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U. J. Catal. 2007,249, 195. doi: 10.1016/j.jcat.2007.04.006

    25. [25]

      (25) Bjørgen, M.; Joensen, F.; Lillerud, K. P.; Olsbye, U.; Svelle, S.Catal. Today 2009, 142, 90. doi: 10.1016/j.cattod.2009.01.015

    26. [26]

      (26) Svelle, S.; Joensen, F.; Nerlov, J.; Olsbye, U.; Lillerud, K. P.;Kolboe, S.; Bjørgen, M. J. Am. Chem. Soc. 2006, 128, 14770.doi: 10.1021/ja065810a

    27. [27]

      (27) Zhan, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu, P.C. Acta Phys. -Chim. Sin. 2006, 22, 672. [张一卫, 周钰明, 邱安定, 王玉, 许艺, 吴沛成. 物理化学学报, 2006, 22, 672.]doi: 10.1016/S1872-1508(06)60026-0

    28. [28]

      (28) Chu, C. T.W.; Socha, R. F. J. Catal. 1984, 86, 289. doi: 10.1016/0021-9517(84)90374-9

    29. [29]

      (29) Kim, J.; Choi, M.; Ryoo, R. J. Catal. 2010, 269, 219. doi: 10.1016/j.jcat.2009.11.009

    30. [30]

      (30) Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.Nature 2009, 461, 246. doi: 10.1038/nature08288


  • 加载中
    1. [1]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    2. [2]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    10. [10]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    19. [19]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(897)
  • Abstract views(1660)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return