Citation: GAN Yong-Ping, QIN Huai-Peng, HUANG Hui, TAO Xin-Yong, FANG Jun-Wu, ZHANG Wen-Kui. Preparation and Photocatalytic Activity of Rutile TiO2-Graphene Composites[J]. Acta Physico-Chimica Sinica, ;2013, 29(02): 403-410. doi: 10.3866/PKU.WHXB201211022 shu

Preparation and Photocatalytic Activity of Rutile TiO2-Graphene Composites

  • Received Date: 11 September 2012
    Available Online: 2 November 2012

    Fund Project: 浙江省自然科学基金(Y4110523, LY12E01003)资助项目 (Y4110523, LY12E01003)

  • In this work, graphene oxide ( ) was prepared from natural flake graphite by the modified Hummers method. A series of composites consisting of rutile TiO2 and graphene (r -TiO2) were synthesized via a one-step hydrothermal reaction of graphene oxide and titanium isopropylate. The influence of the amount of graphene oxide on the photocatalytic activity of the r -TiO2 composites was studied. The photocatalysts were characterized by Brunauer-Emmett-Teller sorption (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, UV-Vis absorbance spectroscopy, and photoluminescence (PL) spectroscopy. The as-formed TiO2 was formed in the rutile phase with a needle-cluster structure, and dispersed uniformly on the surface of graphene sheets. The composites possess higher specific areas than pure rutile TiO2. The photo-degradation performance of Rhodamine B and methyl orange by the r -TiO2 composites under ultraviolet and visible light was studied. The results indicated that r -TiO2 composites prepared with 0.5 mg·mL-1 of graphene oxide had the greatest photocatalytic activity.

  • 加载中
    1. [1]

      (1) Akpan, U. G.; Hameed, B. H. Applied Catalysis A-General2010, 375, 1. doi: 10.1016/j.apcata.2009.12.023

    2. [2]

      (2) Thompson, T. L.; Yates, J. T. Chemical Reviews 2006, 106,4428. doi: 10.1021/cr050172k

    3. [3]

      (3) Liu, J.; Yang, H. T.; Zhang, J. B.; Zhou, X.W.; Lin, Y. Acta Physico-Chimica Sinica 2011, 27, 408. [刘佳, 杨浩田,张敬波, 周晓文, 林原. 物理化学学报, 2011, 27, 408.]doi: 10.3866/PKU.WHXB20110237

    4. [4]

      (4) Cao, Y. Q.; Long, H. J.; Chen, Y. M.; Cao, Y. A. Acta Physico-Chimica Sinica 2009, 25, 1088. [曹永强, 龙绘锦,陈咏梅, 曹亚安. 物理化学学报, 2009, 25, 1088.]doi: 10.3866/PKU.WHXB20090619

    5. [5]

      (5) Wu, L. Z.; Zhi, J. F. Acta Physico-Chimica Sinica 2007, 23,1173. [吴良专, 只金芳. 物理化学学报, 2007, 23, 1173.]doi: 10.3866/PKU.WHXB20070807

    6. [6]

      (6) Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Applied Catalysis A-General 2003, 244, 383. doi: 10.1016/S0926-860X(02)00610-5

    7. [7]

      (7) Li, X. X.; Xiong, Y. J.; Li, Z. Q.; Xie, Y. Inorganic Chemistry2006, 45, 3493. doi: 10.1021/ic0602502

    8. [8]

      (8) Li, Y. Y.; Liu, J. P.; Jia, Z. J. Materials Letters 2006, 60, 1753.doi: 10.1016/j.matlet.2005.12.012

    9. [9]

      (9) Kandiel, T. A.; Dillert, R.; Feldhoff, A.; Bahnemann, D.W.Journal of Physical Chemistry C 2010, 114, 4909. doi: 10.1021/jp912008k

    10. [10]

      (10) Wang, Y.W.; Zhang, L. Z.; Deng, K. J.; Chen, X. Y.; Zou, Z. G.Journal of Physical Chemistry C 2007, 111, 2709. doi: 10.1021/jp066519k

    11. [11]

      (11) Xing, M. Y.; Zhang, J. L.; Chen, F. Applied Catalysis B-Environmental 2009, 89, 563. doi: 10.1016/j.apcatb.2009.01.016

    12. [12]

      (12) Zhang, J. L.;Wu, Y. M.; Xing, M. Y.; Leghari, S. A. K.; Sajjad,S. Energy & Environmental Science 2010, 3, 715. doi: 10.1039/b927575d

    13. [13]

      (13) Feng, C. X.;Wang, Y.; Jin, Z. S.; Zhang, S. L. Acta Physico- Chimica Sinica 2008, 24, 633. [冯彩霞, 王岩, 金振声,张顺利. 物理化学学报, 2008, 24, 633.] doi: 10.3866/PKU.WHXB20080415

    14. [14]

      (14) Vogel, R.; Hoyer, P.;Weller, H. Journal of Physical Chemistry1994, 98, 3183. doi: 10.1021/j100063a022

    15. [15]

      (15) Zhang,W.; Cui, X. L.; Jiang, Z. Y. Acta Physico-Chimica Sinica2008, 24, 1975. [张维, 崔晓莉, 江志裕, 物理化学学报,2008, 24, 1975.] doi: 10.3866/PKU.WHXB20081107

    16. [16]

      (16) Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. ACS Nano 2010, 4,1321. doi: 10.1021/nn901850u

    17. [17]

      (17) Lee, C.;Wei, X. D.; Kysar, J.W.; Hone, J. Science 2008, 321,385. doi: 10.1126/science.1157996

    18. [18]

      (18) Zhang, H.; Lv, X. J.; Li, Y. M.;Wang, Y.; Li, J. H. ACS Nano2010, 4, 380. doi: 10.1021/nn901221k

    19. [19]

      (19) Lee, J. S.; You, K. H.; Park, C. B. Advanced Materials 2012, 24,1084. doi: 10.1002/adma.v24.8

    20. [20]

      (20) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L. L.; Cheng, H. M.Advanced Functional Materials 2011, 21, 1717. doi: 10.1002/adfm.201002295

    21. [21]

      (21) Zhao, H. M.; Su, F.; Fan, X. F.; Yu, H. T.;Wu, D.; Quan, X.Chinese Journal of Catalysis 2012, 33, 777. [赵慧敏, 苏芳,范新飞, 于洪涛, 吴丹, 全燮. 催化学报, 2012, 33, 777.]doi: 10.1016/S1872-2067(11)60374-4

    22. [22]

      (22) Wang,W. G.; Yu, J. G.; Xiang, Q. J.; Cheng, B. Applied Catalysis B-Environmental 2012, 119, 109. doi: 10.1016/j.apcatb.2012.02.035

    23. [23]

      (23) Nethravathi, C.; Rajamathi, M. Carbon 2008, 46, 1994. doi: 10.1016/j.carbon.2008.08.013

    24. [24]

      (24) Hirata, M.; tou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M.Carbon 2004, 42, 2929.

    25. [25]

      (25) Hummers,W. S.; Offeman, R. E. Journal of the American Chemical Society 1958, 80, 1399.

    26. [26]

      (26) Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.;Lee, Y.; Kang, Y. M.; Dou, S. X. Journal of the American Chemical Society 2011, 133, 19314. doi: 10.1021/ja208468d

    27. [27]

      (27) Nguyen-Phan, T. D.; Pham, V. H.; Shin, E.W.; Pham, H. D.;Kim, S.; Chung, J. S.; Kim, E. J.; Hur, S. H. Chemical Engineering Journal 2011, 170, 226. doi: 10.1016/j.cej.2011.03.060

    28. [28]

      (28) Dong, P. Y.;Wang, Y. H.; Guo, L. N.; Liu, B.; Xin, S. Y.; Zhang,J.; Shi, Y. R.; Zeng,W.; Yin, S. Nanoscale 2012, 4, 4641.doi: 10.1039/c2nr31231j

    29. [29]

      (29) Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. ACS Nano 2010,4, 7303. doi: 10.1021/nn1024219

    30. [30]

      (30) Tao, H. C.; Fan, L. Z.; Yan, X. Q.; Qu, X. H. Electrochimica Acta 2012, 69, 328. doi: 10.1016/j.electacta.2012.03.022

    31. [31]

      (31) Wang, D. H.; Choi, D.W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou,R.; Hu, D. H.;Wang, C. M.; Saraf, L. V.; Zhang, J. G.; Aksay, I.A.; Liu, J. ACS Nano 2009, 3, 907. doi: 10.1021/nn900150y

    32. [32]

      (32) Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.;Kleinhammes, A.; Jia, Y.;Wu, Y.; Nguyen, S. T.; Ruoff, R. S.Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034

    33. [33]

      (33) Wu, C.; Huang, X. Y.; Xie, L. Y.; Yu, J. H.; Jiang, P. K. Journal of Materials Chemistry 2011, 21, 17729. doi: 10.1039/c1jm12903a

    34. [34]

      (34) Zhao, X. C.; Zhang, Q.; Zhang, B. S.; Chen, C. M.;Wang, A.Q.; Zhang, T.; Su, D. S. Journal of Materials Chemistry 2012,22, 4963. doi: 10.1039/c2jm15820e

    35. [35]

      (35) Kruk, M.; Jaroniec, M. Chemistry of Materials 2001, 13, 3169.doi: 10.1021/cm0101069

    36. [36]

      (36) Wang, F.; Zhang, K. Current Applied Physics 2012, 12, 346. doi: 10.1016/j.cap.2011.07.030

    37. [37]

      (37) Zhu, P. N.; Nair, A. S.; Peng, S. J.; Yang, S. Y.; Ramakrishna, S.ACS Applied Materials & Interfaces 2012, 4, 581. doi: 10.1021/am201448p

    38. [38]

      (38) Stengl, V.; Popelkova, D.; Vlacil, P. Journal of Physical Chemistry C 2011, 115, 25209. doi: 10.1021/jp207515z

    39. [39]

      (39) Zhou, K. F.; Zhu, Y. H.; Yang, X. L.; Jiang, X.; Li, C. Z. New Journal of Chemistry 2011, 35, 353. doi: 10.1039/c0nj00623h

    40. [40]

      (40) Li, F. B.; Li, X. Z. Chemosphere 2002, 48, 1103. doi: 10.1016/S0045-6535(02)00201-1

    41. [41]

      (41) Zhang, J. L.; Hu, Y.; Matsuoka, M.; Yamashita, H.; Minagawa,M.; Hidaka, H.; Anpo, M. Journal of Physical Chemistry B2001, 105, 8395. doi: 10.1021/jp012080e

    42. [42]

      (42) Zhang, Y. H.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Physical Chemistry Chemical Physics 2012, 14, 9167.

    43. [43]

      (43) Wang, D. T.; Li, X.; Chen, J. F.; Tao, X. Chemical Engineering Journal 2012, 198, 547. doi: 10.1016/j.cej.2012.04.062

    44. [44]

      (44) Huang, H.; Chen, H. F.; Xia, Y.; Tao, X. Y.; Gan, Y. P.;Weng, X.X.; Zhang,W. K. Journal of Colloid and Interface Science2012, 370, 132. doi: 10.1016/j.jcis.2011.12.056

    45. [45]

      (45) Ma, P. J.; Yan, G. T.; Qian, J. J.; Zhang, M.; Yang, J. J. Chinese Journal of Catalysis 2011, 32, 1430. [马鹏举, 闫国田, 钱俊杰, 张敏, 杨建军. 催化学报, 2011, 32, 1430.]

    46. [46]

      (46) Liu, B. T.; Huang, Y. J.;Wen, Y.; Du, L. J.; Zeng,W.; Shi, Y. R.;Zhang, F.; Zhu, G.; Xu, X. H.;Wang, Y. H. Journal of Materials Chemistry 2012, 22, 7484. doi: 10.1039/c2jm16114a


  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(1384)
  • Abstract views(1848)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return