Citation:
SUN Xiao-Fei, XU You-Long, LIU Yang-Hao, LI Lu. Optimizing the Hydrothermal Synthesis of Micro-Sized Olivine LiFePO4[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201209271
-
The low tap density of LiFePO4 is hindering the energy and power density of lithium-ion batteries in portable electronics, electric vehicles, and stationary electricity storage applications. As part of our work to investigate the pathological mechanism of performance degradation in large particle LiFePO4, micro-sized pristine LiFePO4 without modifications, such as surface coating or bulk doping, was first prepared hydrothermally by optimizing the synthesis parameters in this work. The influences of precursor concentration, solution pH, hydrothermal temperature, and heating time on the phase structure, particle size, and morphology of the products were systematically investigated. It was found that the particle size of LiFePO4 increases with decreasing pH value, increasing precursor concentration, increasing hydrothermal temperature, and increasing heating time during hydrothermal synthesis. The performance degradation of large particle LiFePO4 was demonstrated by these intrinsic samples. The specific discharge capacity decreased from 152 to 80 mAh·g-1 at 0.1C rate when the particle size was increased from 0.7 to 16.5 μm. Moreover, less capacities were retained after 100 cycles at 1C rate for larger particle materials. Finally, the optimized LiFePO4 with a distorted diamond shape was prepared for later investigation of the plausible mechanism of performance degradation in large particle LiFePO4. Its electrochemical performance was preliminarily discussed, and will need to be improved in future to obtain practical high energy/power density LiFePO4 cathodes for lithium-ion batteries.
-
-
-
[1]
(1) Whittingham, M. S. Chem. Rev. 2004, 104, 4271. doi: 10.1021/cr020731c
-
[2]
(2) Yang, Z.; Liu, J.; Baskaran, S.; Imhoff, C.; Holladay, J. D.Journal of the Minerals, Metals and Materials Society 2010, 62,14.
-
[3]
(3) Ozawa, K. Solid State Ionics 1994, 69, 212. doi: 10.1016/0167-2738(94)90411-1
-
[4]
(4) Ellis, B. L.; Lee, K. T.; Nazar, L. F. Chem. Mater. 2010, 22, 691.doi: 10.1021/cm902696j
-
[5]
(5) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B.J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571
-
[6]
(6) Ju vic, D.; Uskokovic, D. J. Power Sources 2009, 190, 538.doi: 10.1016/j.jpowsour.2009.01.074
-
[7]
(7) Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. J. Power Sources 2003, 119-121, 252.
-
[8]
(8) Cabana, J.; Shirakawa, J.; Chen, G. Y.; Richardson, T. J.; Grey,C. P. Chem. Mater. 2010, 22, 1249. doi: 10.1021/cm902714v
-
[9]
(9) Ong, S. P.;Wang, L.; Kang, B.; Ceder, G. Chem. Mater. 2008,20, 1798. doi: 10.1021/cm702327g
-
[10]
(10) Recham, N.; Casas-Cabanas, M.; Cabana, J.; Grey, C. P.; Jumas,J. C.; Dupont, L.; Armand, M.; Tarascon, J. M. Chem. Mater.2008, 20, 6798. doi: 10.1021/cm801817n
-
[11]
(11) Zhou, F.; Maxisch, T.; Ceder, G. Phys. Rev. Lett. 2006, 97, 4.
-
[12]
(12) Yamada, A.; Koizumi, H.; Nishimura, S. I.; Sonoyama, N.;Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. Nat. Mater. 2006, 5, 357. doi: 10.1038/nmat1634
-
[13]
(13) Delacourt, C.; Poizot, P.; Tarascon, J. M.; Masquelier, C. Nat. Mater. 2005, 4, 254. doi: 10.1038/nmat1335
-
[14]
(14) Kang, B.; Ceder, G. Nature 2009, 458, 190. doi: 10.1038/nature07853
-
[15]
(15) Morgan, D.; Van der Ven, A.; Ceder, G. Electrochem. Solid- State Lett. 2004, 7, A30.
-
[16]
(16) Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Chem. Mater. 2005, 17, 5085. doi: 10.1021/cm050999v
-
[17]
(17) Nishimura, S. I.; Kobayashi, G.; Ohoyama, K.; Kanno, R.;Yashima, M.; Yamada, A. Nat. Mater. 2008, 7, 707. doi: 10.1038/nmat2251
-
[18]
(18) Kobayashi, G.; Nishimura, S. I.; Park, M. S.; Kanno, R.;Yashima, M.; Ida, T.; Yamada, A. Adv. Funct. Mater. 2009, 19,395. doi: 10.1002/adfm.v19:3
-
[19]
(19) Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.;Carlach, P.; Hamelet, S.; Tarascon, J. M.; Masquelier, C. Nat. Mater. 2008, 7, 741. doi: 10.1038/nmat2245
-
[20]
(20) Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Nano Lett. 2010,10, 4123. doi: 10.1021/nl1023595
-
[21]
(21) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C.Electrochem. Solid-State Lett. 2006, 9, A352.
-
[22]
(22) Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nat. Mater.2004, 3, 147. doi: 10.1038/nmat1063
-
[23]
(23) Herstedt, M.; Stjerndahl, M.; Nytén, A.; Gustafsson, T.;Rensmo, H.; Siegbahn, H.; Ravet, N.; Armand, M.; Thomas, J.O.; Edström, K. Electrochem. Solid-State Lett. 2003, 6, A202.
-
[24]
(24) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1,123. doi: 10.1038/nmat732
-
[25]
(25) Oh, S.W.; Bang, H. J.; Myung, S. T.; Bae, Y. C.; Lee, S. M.;Sun, Y. K. J. Electrochem. Soc. 2008, 155, A414.
-
[26]
(26) Chen, J.; Vacchio, M. J.;Wang, S.; Chernova, N.; Zavalij, P. Y.;Whittingham, M. S. Solid State Ionics 2008, 178, 1676. doi: 10.1016/j.ssi.2007.10.015
-
[27]
(27) Yang, S.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2001, 3, 505. doi: 10.1016/S1388-2481(01)00200-4
-
[28]
(28) Chen, G.; Song, X.; Richardson, T. J. J. Electrochem. Soc. 2007,154, A627.
-
[29]
(29) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27, 2347. [赵浩川, 宋杨,郭孝东, 钟本和, 董静, 刘恒. 物理化学学报, 2011, 27,2347.] doi: 10.3866/PKU.WHXB20110905
-
[30]
(30) Fisher, C. A. J.; Islam, M. S. J. Mater. Chem. 2008, 18, 1209.doi: 10.1039/b715935h
-
[31]
(31) Chen, G.; Song, X.; Richardson, T. J. Electrochem. Solid-State Lett. 2006, 9, A295.
-
[32]
(32) Yu, D. Y.W.; Donoue, K.; Kadohata, T.; Murata, T.; Matsuta, S.;Fujitani, S. J. Electrochem. Soc. 2008, 155, A526.
-
[33]
(33) Wang, L.; Zhou, F.; Meng, Y. S.; Ceder, G. Phys. Rev. B 2007,76, 165435. doi: 10.1103/PhysRevB.76.165435
-
[34]
(34) Dokko, K.; Koizumi, S.; Kanamura, K. Chem. Lett. 2006, 35,338. doi: 10.1246/cl.2006.338
-
[35]
(35) Ellis, B.; Kan,W. H.; Makahnouk,W. R. M.; Nazar, L. F.J. Mater. Chem. 2007, 17, 3248. doi: 10.1039/b705443m
-
[36]
(36) Dokko, K.; Shiraishi, K.; Kanamura, K. J. Electrochem. Soc.2005, 152, A2199.
-
[37]
(37) Sun, X.; Xu, Y. Mater. Lett. 2012, 84, 139. doi: 10.1016/j.matlet.2012.06.053
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240115
-
[2]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100085
-
[3]
Han ZHANG , Jianfeng SUN , Jinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240098
-
[4]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406014
-
[5]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240270
-
[6]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240339
-
[7]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407023
-
[8]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230252
-
[9]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2024.100040
-
[10]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309028
-
[11]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202311030
-
[12]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240149
-
[13]
Ying Li , Yushen Zhao , Kai Chen , Xu Liu , Tingfeng Yi , Li-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202305007
-
[14]
Yuanyuan JIANG , Fangfang TU , Yuhong ZHANG , Shi CHEN , Jiayuan XIANG , Xinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240441
-
[15]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, doi: 10.12461/PKU.DXHX202404009
-
[16]
Xintong Zhu , Bin Cao , Chong Yan , Cheng Tang , Aibing Chen , Qiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100096
-
[17]
Jingshuo Zhang , Yue Zhai , Ziyun Zhao , Jiaxing He , Wei Wei , Jing Xiao , Shichao Wu , Quan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202306006
-
[18]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240189
-
[19]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230488
-
[20]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408007
-
[1]
Metrics
- PDF Downloads(931)
- Abstract views(1999)
- HTML views(5)