Citation: JIN Tao, XU Di, DIAO Peng, XIANG Min. Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2276-2284. doi: 10.3866/PKU.WHXB201209101 shu

Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes

  • Received Date: 4 July 2012
    Available Online: 10 September 2012

    Fund Project: 国家自然科学基金(20973020, 21173016) (20973020, 21173016) 高等学校博士学科点基金(20101102110002) (20101102110002) 新世纪人才支持计划(NCET-08-0034)资助项目 (NCET-08-0034)

  • TiO2 nanocrystals were synthesized using a sol-gel method, and then the impregnation technique was used to modify the surface of the TiO2 nanocrystals with FeO(OH). The optimal concentration of Fe3+ for the modification of the TiO2 nanocrystals was determined by UV-Vis spectroscopy. A cobalt-phosphate (CoPi) water oxidation catalyst was electrochemically deposited onto the FeO(OH)- TiO2 photoanodes. The resulting FeO(OH)-TiO2/CoPi composite photoanodes were systematically characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM), and the photoelectrochemical water oxidation properties of the FeO(OH)-TiO2/CoPi composite photoanodes were investigated in neutral conditions by electrochemical and photoelectrochemical methods. The results indicated that the TiO2 particles were pure anatase nanocrystals, and the FeO(OH) phase on the TiO2 surfaces was ethite. The optimal light absorption properties of the FeO(OH)-TiO2 photoanodes were achieved when the photoanodes were prepared in the precursor solution with a Fe3+:TiO2 mass ratio of 0.05%. The overpotential for oxygen evolution on the FeO(OH)-TiO2/CoPi composite photoanodes under illumination decreased significantly compared with that obtained on the CoPi catalyst. The high oxygen evolution activity of the composite photoanodes can be attributed to modification of FeO(OH) on TiO2 nanocrystal surfaces changing the light absorption band from the ultraviolet to the visible region and CoPi inhibited hole-electron recombination through facilitating the photon-induced hole transfer for water oxidation.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0

    2. [2]

      (2) Jang, J. S.; Kim, H. G.; Joshi, U. A.; Jang, J.W.; Lee, J. S. Int. J. Hydrog. Energy 2008, 33, 5975. doi: 10.1016/j.ijhydene.2008.07.105

    3. [3]

      (3) Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Int. J. Hydrog. Energy 2009, 34, 5337. doi: 10.1016/j.ijhydene.2009.05.011

    4. [4]

      (4) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor,G. K.; Feng, X.; Paulose, M.; Seabold, J. A.; Choi, K. S.;Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327. doi: 10.1021/jp809385x

    5. [5]

      (5) Liu, F. S.; Ji, R.;Wu, M.; Sun, Y. M. Acta Phys. -Chim. Sin.2007, 23, 1899. [刘福生, 吉仁, 吴敏, 孙岳明. 物理化学学报, 2007, 23, 1899.] doi: 10.3866/PKU.WHXB20071213

    6. [6]

      (6) Li, H. L. Luo,W. L.; Chen, T.; Tian,W. Y.; Sun, M.; Li, C.; Zhu,D.; Liu, R. R.; Zhao, Y. L.; Liu, C. L. Acta Phys. -Chim. Sin.2008, 24, 1383. [李海龙, 罗武林, 陈涛, 田文宇, 孙茂,黎春, 朱地, 刘冉冉, 赵宇亮, 刘春立. 物理化学学报,2008, 24, 1383.] doi: 10.3866/PKU.WHXB20080810

    7. [7]

      (7) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science2001, 293, 269. doi: 10.1126/science.1061051

    8. [8]

      (8) ng, J.; Lai, Y.; Lin, C. Electrochimica Acta 2010, 55, 4776.doi: 10.1016/j.electacta.2010.03.055

    9. [9]

      (9) Fei, H.; Yang, Y.; Ro w, D. L.; Fan, X.; Oliver, S. R. J. ACS Appl. Mater. Interfaces 2010, 2, 974. doi: 10.1021/am100087b

    10. [10]

      (10) Zhang, Z.; Hossain, M. F.; Takahashi, T. Int. J. Hydrog. Energy2010, 35, 8528. doi: 10.1016/j.ijhydene.2010.03.032

    11. [11]

      (11) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009

    12. [12]

      (12) Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Chem. Mater.2011, 23, 5282. doi: 10.1021/cm203025b

    13. [13]

      (13) Yu, H.; Irie, H.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.;Miyauchi, M.; Hashimoto, K. J. Phys. Chem. C 2010, 114,16481. doi: 10.1021/jp1071956

    14. [14]

      (14) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.;Hashimoto, K. App. Catal. B: Environ. 2010, 96, 142.

    15. [15]

      (15) Irie, H.; Kamiya, K.; Shibanuma, T.; Miura, S.; Tryk, D. A.;Yokoyama, T.; Hashimoto, K. J. Phys. Chem. C 2009, 113,10761. doi: 10.1021/jp903063z

    16. [16]

      (16) Nakamura, R.; Okamoto, A.; Osawa, H.; Irie, H.; Hashimoto, K.J. Am. Chem. Soc. 2007, 129, 9596. doi: 10.1021/ja073668n

    17. [17]

      (17) Luo, D. C;. Zhang, L. L.; Long, H. J.; Chen, Y. M.; Cao, Y. A.Acta Phys. -Chim. Sin. 2008, 24, 1095. [罗大超, 张兰兰, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2008, 24, 1095.] doi: 10.3866/PKU.WHXB20080632

    18. [18]

      (18) Kanan, M.W.; Nocera, D. G. Science 2008, 321, 1072. doi: 10.1126/science.1162018

    19. [19]

      (19) Surendranath, Y.; Kanan, M.W.; Nocera, D. G. J. Am. Chem. Soc. 2010, 132, 16501. doi: 10.1021/ja106102b

    20. [20]

      (20) Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.;Casey,W. H.; Britt, R. D.; Stahl, S. S. J. Am. Chem. Soc. 2011,133, 14431. doi: 10.1021/ja205647m

    21. [21]

      (21) Steinmiller, E. M. P.; Choi, K. S. Proc. Natl. Acad. Sci. U. S. A.2009, 106, 20633. doi: 10.1073/pnas.0910203106

    22. [22]

      (22) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug,D. R.; Durrant, J. R. J. Am. Chem. Soc. 2011, 133, 14868. doi: 10.1021/ja205325v

    23. [23]

      (23) Zhong, D. K.; Gamelin, D. R. J. Am. Chem. Soc. 2010, 132,4202. doi: 10.1021/ja908730h

    24. [24]

      (24) Zhong, D. K.; Sun, J.; Inumaru, H.; Gamelin, D. R. J. Am. Chem. Soc. 2009, 131, 6086. doi: 10.1021/ja9016478

    25. [25]

      (25) Abdi, F. F.; van de Krol, R. J. Phys. Chem. C 2012, 116, 9398.

    26. [26]

      (26) Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011,133, 18370. doi: 10.1021/ja207348x

    27. [27]

      (27) Jeon, T. H.; Choi,W.; Park, H. Phys. Chem. Chem. Phys. 2011,13, 21392.

    28. [28]

      (28) Seabold, J. A.; Choi, K. S. Chem. Mater. 2011, 23, 1105. doi: 10.1021/cm1019469

    29. [29]

      (29) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci.2003, 259, 43. doi: 10.1016/S0021-9797(03)00036-5

    30. [30]

      (30) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci.2003, 259, 53. doi: 10.1016/S0021-9797(03)00035-3

    31. [31]

      (31) Zhong, D. K.; Cornuz, M.; Sivula, K.; Grätzel, M.; Gamelin, D.R. Energy & Environmental Science 2011, 4, 1759. doi: 10.1039/c1ee01034d

    32. [32]

      (32) Chen, Y.; He, X.; Zhao, X.; Yuan, Q.; Gu, X. J. Colloid Interface Sci. 2007, 310, 171. doi: 10.1016/j.jcis.2007.01.046

    33. [33]

      (33) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.;Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h


  • 加载中
    1. [1]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    7. [7]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    10. [10]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    11. [11]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    16. [16]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    20. [20]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

Metrics
  • PDF Downloads(1095)
  • Abstract views(2131)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return